Suppr超能文献

通过高通量设计实现铁电隧道结中的巨电阻:迈向高性能神经形态计算

Giant Electroresistance in Ferroelectric Tunnel Junctions via High-Throughput Designs: Toward High-Performance Neuromorphic Computing.

作者信息

Fang Hong, Wang Jie, Nie Fang, Zhang Nana, Yu Tongliang, Zhao Le, Shi Chaoqun, Zhang Peng, He Bin, Lü Weiming, Zheng Limei

机构信息

Functional Materials and Acousto-Optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China.

Spintronics Institute, University of Jinan, Jinan 250022, China.

出版信息

ACS Appl Mater Interfaces. 2024 Jan 10;16(1):1015-1024. doi: 10.1021/acsami.3c13171. Epub 2023 Dec 29.

Abstract

Ferroelectric tunnel junctions (FTJs) have been regarded as one of the most promising candidates for next-generation devices for data storage and neuromorphic computing owing to their advantages such as fast operation speed, low energy consumption, convenient 3D stack ability, etc. Here, dramatically different from the conventional engineering approaches, we have developed a tunnel barrier decoration strategy to improve the ON/OFF ratio, where the ultrathin SrTiO (STO) dielectric layers are periodically mounted onto the BaTiO (BTO) ferroelectric tunnel layer using the high-throughput technique. The inserted STO enhances the local tetragonality of the BTO, resulting in a strengthened ferroelectricity in the tunnel layer, which greatly improves the OFF state and reduces the ON state. Combined with the optimized oxygen migration, which can further manipulate the tunneling barrier, a record-high ON/OFF ratio of ∼10 has been achieved. Furthermore, utilizing these FTJ-based artificial synapses, an artificial neural network has been simulated via back-propagation algorithms, and a classification accuracy as high as 92% has been achieved. This study screens out the prominent FTJ by the high-throughput technique, advancing the tunnel layer decoration at the atomic level in the FTJ design and offering a fundamental understanding of the multimechanisms in the tunnel barrier.

摘要

铁电隧道结(FTJs)因其具有快速的运行速度、低能耗、便于三维堆叠等优点,被视为下一代数据存储和神经形态计算设备最有前途的候选者之一。在此,与传统工程方法截然不同的是,我们开发了一种隧道势垒修饰策略来提高开/关比,即使用高通量技术将超薄SrTiO(STO)介电层周期性地安装在BaTiO(BTO)铁电隧道层上。插入的STO增强了BTO的局部四方性,导致隧道层中铁电性增强,这极大地改善了关态并降低了开态。结合优化的氧迁移,其可进一步操控隧道势垒,实现了高达约10的创纪录高开/关比。此外,利用这些基于FTJ的人工突触,通过反向传播算法模拟了人工神经网络,并实现了高达92%的分类准确率。本研究通过高通量技术筛选出了优异的FTJ,推动了FTJ设计中原子级的隧道层修饰,并为隧道势垒中的多种机制提供了基本认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验