Liang Chen, Wang Chong, Xue Xianghui, Dou Xiankang, Chen Tingdi
Opt Lett. 2022 Jul 1;47(13):3179-3182. doi: 10.1364/OL.465307.
Hyperfine wind structure detection is important for aerodynamic and aviation safety. Pulse coherent Doppler wind LIDAR (PCDWL) is a widespread wind remote sensing method with tunable spatial and temporal resolutions. However, meter scale and sub-second resolution are still challenging for PCDWL. This is because of the constraints among short laser pulse duration, spectral broadening, detection accuracy, and real-time processing. In this Letter, to further improve the spatial and temporal resolution of PCDWL, we optimize the optical design of a nanosecond fiber laser and telescope and adopt a new, to the best of our knowledge, algorithm called the even-order derivative peak sharpening technique. During the experiment, all-fiber PCDWL with spatial and temporal resolutions of 3 m and 0.1 s, respectively, is demonstrated. Two-day continuous observation of the wakes of the Chinese high-speed train shows detailed hyperfine wind structures. This is similar to a computational fluid dynamics simulation.
超精细风结构检测对于空气动力学和航空安全至关重要。脉冲相干多普勒测风激光雷达(PCDWL)是一种广泛应用的风遥感方法,具有可调的空间和时间分辨率。然而,对于PCDWL来说,米级尺度和亚秒级分辨率仍然具有挑战性。这是由于短激光脉冲持续时间、光谱展宽、检测精度和实时处理之间的相互制约。在本信函中,为了进一步提高PCDWL的空间和时间分辨率,我们优化了纳秒光纤激光器和望远镜的光学设计,并采用了一种据我们所知的名为偶数阶导数峰值锐化技术的新算法。在实验过程中,展示了空间和时间分辨率分别为3米和0.1秒的全光纤PCDWL。对中国高速列车尾流进行的为期两天的连续观测显示了详细的超精细风结构。这与计算流体动力学模拟结果相似。