Wei Chengbiao, Han Yulan, Liu Hao, Gan Ruihui, Ma Wenjun, Liu Haihui, Song Yan, Zhang Xiangwu, Shi Jingli, Ma Chang
Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China.
School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK.
J Colloid Interface Sci. 2022 Nov;625:946-955. doi: 10.1016/j.jcis.2022.06.047. Epub 2022 Jun 14.
Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage. However, the notorious lithium polysulfides (LiPSs) shuttle effect and torpid redox kinetics hinder their practical application. Enhancing phase conversion efficiency and limiting the dissolution of LiPSs are critical for stabilizing Li-S batteries. Herein, sulfiphilic defective TiO nanoparticles (D-TiO) were integrated into the lithiophilic N-doped porous carbon nanofiber membrane (D-TiO@NPCNF) to construct interlayer for catalyzing the conversion of LiPSs. The D-TiO@NPCNF provides hierarchical porous structure and large specific surface area, and the formed 3D conductive network accelerates the transport of electrons and ions. The dual-active sites (N and D-TiO) enhance the interface conversion and chemisorption ability of LiPSs via forming "Li-N and Ti-S" bonds. Due to the structural advantage of the D-TiO@NPCNF, the Li-S batteries exhibit excellent cycling stability (only 0.049% decay per cycle in 800cycles at 1.0C) and impressive specific capacity (608 mAh g at 3.0C). This work is expected to deepen the comprehension of complex interphase conversion processes of LiPSs and provide novel ideas for the design of new interlayer materials.
锂硫(Li-S)电池是下一代储能的有前途的候选者。然而,臭名昭著的多硫化锂(LiPSs)穿梭效应和迟缓的氧化还原动力学阻碍了它们的实际应用。提高相转换效率和限制LiPSs的溶解对于稳定锂硫电池至关重要。在此,将亲硫缺陷型TiO纳米颗粒(D-TiO)集成到亲锂N掺杂多孔碳纳米纤维膜(D-TiO@NPCNF)中,以构建用于催化LiPSs转化的中间层。D-TiO@NPCNF提供分级多孔结构和大比表面积,并且形成的三维导电网络加速了电子和离子的传输。双活性位点(N和D-TiO)通过形成“Li-N和Ti-S”键增强了LiPSs的界面转化和化学吸附能力。由于D-TiO@NPCNF的结构优势,锂硫电池表现出优异的循环稳定性(在1.0C下800次循环中每循环仅衰减0.049%)和令人印象深刻的比容量(在3.0C下为608 mAh g)。这项工作有望加深对LiPSs复杂相间转化过程的理解,并为新型中间层材料的设计提供新思路。