Suppr超能文献

一种采用先定性后定量的顺序方法进行细胞色素P450反应表型分析的改进方法。

An improved method for cytochrome p450 reaction phenotyping using a sequential qualitative-then-quantitative approach.

作者信息

Doran Angela C, Dantonio Alyssa L, Gualtieri Gabrielle M, Balesano Amanda, Landers Connor, Burchett Woodrow, Goosen Theunis C, Obach R Scott

机构信息

Medicine Design - ADME Sciences, Pfizer, United States.

Pfizer, United States.

出版信息

Drug Metab Dispos. 2022 Jul 1;50(9):DMD-AR-2022-000883. doi: 10.1124/dmd.122.000883.

Abstract

Cytochrome P450 reaction phenotyping to determine the fraction of metabolism values (f) for individual enzymes is a standard study in the evaluation of a new drug. However, there are technical challenges in these studies caused by shortcomings in the selectivity of P450 inhibitors and unreliable scaling procedures for recombinant P450 (rCYP) data. In this investigation, a two-step "qualitative-then-quantitative" approach to P450 reaction phenotyping is described. In the first step, each rCYP is tested qualitatively for potential to generate metabolites. In the second step, selective inhibitors for the P450s identified in step1 are tested for their effects on metabolism using full inhibition curves. Forty-eight drugs were evaluated in step 1 and there were no examples of missing an enzyme important to in vivo clearance. Five drugs (escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone) were selected for full phenotyping in step2 to determine f values, with findings compared to f values estimated from single inhibitor concentration data and rCYP with intersystem-extrapolation-factor corrections. The two-step approach yielded f values for major drug clearing enzymes that are close to those estimated from clinical data: escitalopram and CYP2C19 (0.42 vs 0.36-0.82), fluvastatin and CYP2C9 (0.76 vs 0.76), pioglitazone and CYP2C8 (0.72 vs 0.73), propranolol and CYP2D6 (0.68 vs 0.37-0.56) and risperidone and CYP2D6 (0.60 vs 0.66-0.88). Reaction phenotyping data generated in this fashion should offer better input to physiologically-based pharmacokinetic models for prediction of DDI and impact of genetic polymorphisms on drug clearance. The qualitative-then-quantitative approach is proposed as a replacement to standard reaction phenotyping strategies. P450 reaction phenotyping is important for projecting drug-drug interactions and interpatient variability in drug exposure. However, currently recommended practices can frequently fail to provide reliable estimates of the fractional contributions of specific P450 enzymes (f) to drug clearance. In this report, we describe a two-step qualitative-then-quantitative reaction phenotyping approach that yields more accurate estimates of f.

摘要

细胞色素P450反应表型分析以确定各个酶的代谢分数值(f)是新药评估中的一项标准研究。然而,这些研究存在技术挑战,这是由P450抑制剂选择性的不足以及重组P450(rCYP)数据不可靠的标度程序所导致的。在本研究中,描述了一种用于P450反应表型分析的两步“先定性后定量”方法。第一步,对每种rCYP产生代谢物的潜力进行定性测试。第二步,使用完全抑制曲线测试在第一步中鉴定出的P450的选择性抑制剂对代谢的影响。在第一步中评估了48种药物,没有遗漏对体内清除重要的酶的例子。在第二步中选择了5种药物(艾司西酞普兰、氟伐他汀、吡格列酮、普萘洛尔和利培酮)进行全面表型分析以确定f值,并将结果与根据单抑制剂浓度数据和采用系统间外推因子校正的rCYP估计的f值进行比较。两步法得出的主要药物清除酶的f值与根据临床数据估计的值接近:艾司西酞普兰和CYP2C19(0.42对0.36 - 0.82)、氟伐他汀和CYP2C9(0.76对0.76)、吡格列酮和CYP2C8(0.72对0.73)、普萘洛尔和CYP2D6(0.68对0.37 - 0.56)以及利培酮和CYP2D6(0.60对0.66 - 0.88)。以这种方式生成的反应表型分析数据应为基于生理学的药代动力学模型提供更好的输入,以预测药物相互作用(DDI)以及基因多态性对药物清除的影响。建议采用先定性后定量的方法替代标准反应表型分析策略。P450反应表型分析对于预测药物 - 药物相互作用以及患者间药物暴露的变异性很重要。然而,目前推荐的做法常常无法提供特定P450酶对药物清除的分数贡献(f)的可靠估计。在本报告中,我们描述了一种两步先定性后定量的反应表型分析方法,该方法能更准确地估计f。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验