Laboratoire de Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636 Centre National de la Recherche Scientifique, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres University, Sorbonne Université, Université de Paris 1, Paris, 75005, France.
Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS UMR 8246, INSERM U1130, Neurosciences Paris Seine, Institut de Biologie Paris Seine, Paris, 75005, France.
J Acoust Soc Am. 2022 Jun;151(6):4165. doi: 10.1121/10.0011464.
A multi-node acoustofluidic chip working on a broadband spectrum and beyond the resonance is designed for cell manipulations. A simple one-dimensional (1D) multi-layer model is used to describe the stationary standing waves generated inside a cavity. The transmissions and reflections of the acoustic wave through the different layers and interfaces lead to the creation of pressure nodes away from the resonance condition. A transparent cavity and a broadband ultrasonic transducer allow the measurement of the acoustic energy over a wide frequency range using particle image velocimetry measurements and the relation between acoustic energy and the particles velocity. The automation of the setup allows the acquisition over a large spectrum with a high frequency definition. The results show a wide continuous operating range for the acoustofluidic chip, which compares well with the 1D model. The variation of the acoustic radiation force when varying the frequency can be compensated to ensure a constant amplitude for the ARF. This approach is finally applied to mesenchymal stem cell (MCS) spheroids cultured in acoustic levitation. The MSC spheroids can be moved and merged just by varying the acoustic frequency. This approach opens the path to various acoustic manipulations and to complex 3D tissue engineering in acoustic levitation.
设计了一种用于细胞操作的多节点声流芯片,该芯片在宽带频谱上工作且超出了共振范围。使用简单的一维(1D)多层模型来描述腔内产生的稳定驻波。声波通过不同层和界面的传输和反射导致在远离共振条件的位置产生压力节点。透明腔和宽带超声换能器允许使用粒子图像测速测量法在很宽的频率范围内测量声能,以及声能与粒子速度之间的关系。该设置的自动化允许在高频率定义下采集大的频谱。结果表明,声流芯片具有较宽的连续工作范围,与 1D 模型相比表现良好。当改变频率时,可以补偿声辐射力的变化,以确保 ARF 的振幅保持不变。最后,该方法应用于声悬浮中培养的间充质干细胞(MSC)球体。通过改变声频率,MSC 球体可以移动和融合。这种方法为各种声操作以及声悬浮中的复杂 3D 组织工程开辟了道路。