Coutant Antonin, Achilleos Vassos, Richoux Olivier, Theocharis Georgios, Pagneux Vincent
Institut de Mathématiques de Bourgogne (IMB), UMR 5584, CNRS, Université de Bourgogne Franche-Comté, Dijon F-21000, France.
Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique-Graduate School (IA-GS), CNRS, Avenue O. Messiaen, Le Mans Cedex 9 F-72085, France.
J Acoust Soc Am. 2022 Jun;151(6):3626. doi: 10.1121/10.0011550.
Topological systems furnish a powerful way of localizing wave energy at edges of a structured material. Usually, this relies on Bragg scattering to obtain bandgaps with nontrivial topological structures. However, this limits their applicability to low frequencies because that would require very large structures. A standard approach to address the problem is to add resonating elements inside the material to open gaps in the subwavelength regime. Unfortunately, generally, one has no precise control on the properties of the obtained topological modes, such as their frequency or localization length. In this work, a unique construction is proposed to couple acoustic resonators such that acoustic modes are mapped exactly to the eigenmodes of the Su-Schrieffer-Heeger (SSH) model. The relation between energy in the lattice model and the acoustic frequency is controlled by the characteristics of the resonators. In this way, SSH topological modes are obtained at any given frequency, for instance, in the subwavelength regime. The construction is also generalized to obtain well-controlled topological edge modes in alternative tunable configurations.
拓扑系统提供了一种在结构化材料边缘定位波能量的强大方法。通常,这依赖于布拉格散射来获得具有非平凡拓扑结构的带隙。然而,这限制了它们在低频下的适用性,因为这需要非常大的结构。解决该问题的一种标准方法是在材料内部添加谐振元件,以在亚波长范围内打开带隙。不幸的是,一般来说,人们无法精确控制所获得的拓扑模式的特性,例如它们的频率或局域长度。在这项工作中,提出了一种独特的结构来耦合声学谐振器,使得声学模式能够精确地映射到Su-Schrieffer-Heeger(SSH)模型的本征模式。晶格模型中的能量与声频之间的关系由谐振器的特性控制。通过这种方式,可以在任何给定频率下获得SSH拓扑模式,例如在亚波长范围内。该结构还被推广到在其他可调配置中获得可控性良好的拓扑边缘模式。