School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
J Colloid Interface Sci. 2022 Nov 15;626:13-22. doi: 10.1016/j.jcis.2022.06.107. Epub 2022 Jun 26.
Biomass-derived microwave absorbers have attracted extensive attention due to their natural abundance, low cost and eco-friendliness. However, it is still a challenge to achieve superior absorptivity under the extremely low filler content in such absorbers. Herein, we engineer a hybrid of CoFe alloy nanoparticles (NPs) anchoring on the biomass shaddock peel derived porous carbon nanosheets (CNs) for superlight and efficient microwave absorption. The CNs exhibit attractive graphene-like morphology with CoFe alloy NPs uniformly dispersing throughout the CNs. It is revealed that the EM parameters could be well controlled by tailoring the deposition ratio of CoFe NPs to optimize impedance matching. Specifically, the sample with relatively sparse CoFe NPs exhibit a reflection loss (RL) of -22.3 dB and broad absorption bandwidth of 5.3 GHz in Ku band under the ultralow filler content of only 8.0 wt%. As the deposition ratio of magnetic CoFe NPs increases, the optimized absorption peak moves to X band with -50.6 dB of RL value and 4.5 GHz of effective absorption, completely covering the whole X band. The elaborative studies demonstrate the significant influence of impedance matching on the ultimate absorption performance. This work paves a new way for the development of biomass-derived composites as superlight and tunable microwave absorber.
生物质衍生的吸波体由于其丰富的天然资源、低廉的成本和环境友好性而受到广泛关注。然而,在如此吸波体极低的填充含量下,实现卓越的吸收性仍然是一个挑战。在此,我们设计了一种 CoFe 合金纳米粒子(NPs)锚定在生物质柚子皮衍生的多孔碳纳米片(CNs)上的杂化材料,用于超轻和高效的微波吸收。CNs 呈现出有吸引力的类石墨烯形态,CoFe 合金 NPs 均匀分散在整个 CNs 中。结果表明,通过调整 CoFe NPs 的沉积比可以很好地控制 EM 参数,以优化阻抗匹配。具体来说,在超低填充量仅为 8.0wt%的情况下,具有相对稀疏 CoFe NPs 的样品在 Ku 波段表现出-22.3dB 的反射损耗(RL)和 5.3GHz 的宽吸收带宽。随着磁性 CoFe NPs 沉积比的增加,优化后的吸收峰向 X 波段移动,RL 值为-50.6dB,有效吸收带宽为 4.5GHz,完全覆盖整个 X 波段。详细的研究表明,阻抗匹配对最终吸收性能有显著影响。这项工作为开发超轻和可调谐的生物质衍生复合材料作为微波吸收体开辟了新途径。