Suppr超能文献

聚氯乙烯和玉米芯共水热碳化制备固体燃料:更高的脱氯效率和工艺水循环。

Solid fuel production from co-hydrothermal carbonization of polyvinyl chloride and corncob: Higher dechlorination efficiency and process water recycling.

机构信息

School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China.

School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China.

出版信息

Sci Total Environ. 2022 Oct 15;843:157082. doi: 10.1016/j.scitotenv.2022.157082. Epub 2022 Jul 1.

Abstract

The hydrothermal carbonization (HTC) of polyvinyl chloride (PVC) and wet herbal agricultural wastes for solid fuel production remains bleak economics and sustainability because of high chloride residual, wastewater burden and low production capacity. In this study, the HTC dechlorination was investigated using the first-order reaction kinetic analysis. We found that the co-hydrothermal carbonization (co-HTC) of PVC and the typical biomass (corncob) achieved a staggering drop of dechlorination activation energy from 189.95 kJ/mol to 110.04 kJ/mol. The co-HTC process achieved rapid dechlorination and carbonization due to synergistic effect, to suppress the chlorine content in bituminous-coal-like hydrochar less than 0.05 %. The process wastewater (process water) from co-HTC was recycled four times to evaluate the reusability and chemical evolution. The organics in co-HTC environment enhanced the carbonization which was confirmed by the improved heating value (30.06 to 32.42 MJ·kg), hydrochar yield (33.33 % to 36.47 %) and energy recovery efficiency (57.73 % to 68.13 %). The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) evidenced the process water recirculation maintained high chloride removal. Moreover, the possible formation pathways of two kinds of hydrochars were discussed through the chemical composition of the aqueous phase and the characteristic structures of hydrochar. The co-HTC and process water recycling strategies provide a more promising prospect to convert PVC and biomass wastes into solid fuels.

摘要

聚氯乙烯(PVC)和湿草药农业废物的水热碳化(HTC)用于生产固体燃料的经济和可持续性仍然黯淡,因为存在高氯残留、废水负担和低生产能力。在这项研究中,使用一级反应动力学分析研究了 HTC 的脱氯作用。我们发现,PVC 和典型生物质(玉米芯)的共水热碳化(co-HTC)实现了脱氯活化能从 189.95 kJ/mol 到 110.04 kJ/mol 的惊人下降。由于协同效应,共 HTC 过程实现了快速脱氯和碳化,从而抑制了类似于沥青的水热炭中的氯含量低于 0.05%。共 HTC 过程的工艺废水(工艺水)经过四次回收利用,以评估其可重复使用性和化学演变。共 HTC 环境中的有机物增强了碳化作用,这通过提高的热值(从 30.06 到 32.42 MJ·kg)、水热炭产率(从 33.33%到 36.47%)和能量回收效率(从 57.73%到 68.13%)得到了证实。傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)证明了工艺水的循环可以保持高的氯化物去除率。此外,通过水相的化学组成和水热炭的特征结构,讨论了两种水热炭的可能形成途径。共 HTC 和工艺水回收策略为将 PVC 和生物质废物转化为固体燃料提供了更有前途的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验