Suppr超能文献

基于自回归核的非参数贝叶斯混合模型的脑电波分析

Brain Waves Analysis Via a Non-Parametric Bayesian Mixture of Autoregressive Kernels.

作者信息

Granados-Garcia Guilllermo, Fiecas Marc, Babak Shahbaba, Fortin Norbert J, Ombao Hernando

机构信息

King Abdullah University of Science and Technology.

University of Minnesota.

出版信息

Comput Stat Data Anal. 2022 Oct;174. doi: 10.1016/j.csda.2021.107409. Epub 2021 Dec 16.

Abstract

The standard approach to analyzing brain electrical activity is to examine the spectral density function (SDF) and identify frequency bands, defined a priori, that have the most substantial relative contributions to the overall variance of the signal. However, a limitation of this approach is that the precise frequency and bandwidth of oscillations are not uniform across different cognitive demands. Thus, these bands should not be arbitrarily set in any analysis. To overcome this limitation, the Bayesian mixture auto-regressive decomposition (BMARD) method is proposed, as a data-driven approach that identifies (i) the number of prominent spectral peaks, (ii) the frequency peak locations, and (iii) their corresponding bandwidths (or spread of power around the peaks). Using the BMARD method, the standardized SDF is represented as a Dirichlet process mixture based on a kernel derived from second-order auto-regressive processes which completely characterize the location (peak) and scale (bandwidth) parameters. A Metropolis-Hastings within the Gibbs algorithm is developed for sampling the posterior distribution of the mixture parameters. Simulations demonstrate the robust performance of the proposed method. Finally, the BMARD method is applied to analyze local field potential (LFP) activity from the hippocampus of laboratory rats across different conditions in a non-spatial sequence memory experiment, to identify the most prominent frequency bands and examine the link between specific patterns of brain oscillatory activity and trial-specific cognitive demands.

摘要

分析脑电活动的标准方法是检查频谱密度函数(SDF)并识别先验定义的频段,这些频段对信号的总体方差具有最大的相对贡献。然而,这种方法的一个局限性是,振荡的精确频率和带宽在不同的认知需求下并不统一。因此,在任何分析中都不应随意设置这些频段。为了克服这一局限性,提出了贝叶斯混合自回归分解(BMARD)方法,这是一种数据驱动的方法,可识别(i)显著频谱峰值的数量,(ii)频率峰值位置,以及(iii)它们相应的带宽(或峰值周围的功率分布)。使用BMARD方法,标准化的SDF表示为基于从二阶自回归过程导出的核的狄利克雷过程混合,该过程完全表征了位置(峰值)和尺度(带宽)参数。在吉布斯算法中开发了一种Metropolis-Hastings方法来对混合参数的后验分布进行采样。仿真结果表明了该方法的稳健性能。最后,将BMARD方法应用于分析非空间序列记忆实验中不同条件下实验室大鼠海马体的局部场电位(LFP)活动,以识别最突出的频段,并研究脑振荡活动的特定模式与特定试验认知需求之间的联系。

相似文献

1
Brain Waves Analysis Via a Non-Parametric Bayesian Mixture of Autoregressive Kernels.
Comput Stat Data Anal. 2022 Oct;174. doi: 10.1016/j.csda.2021.107409. Epub 2021 Dec 16.
2
A Semiparametric Bayesian Approach to Heterogeneous Spatial Autoregressive Models.
Entropy (Basel). 2024 Jun 7;26(6):498. doi: 10.3390/e26060498.
4
Bayesian mixture modelling with ranked set samples.
Stat Med. 2024 Aug 30;43(19):3723-3741. doi: 10.1002/sim.10144. Epub 2024 Jun 18.
5
Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations.
IEEE Trans Signal Process. 2016 Jun 15;64(12):3077-3092. doi: 10.1109/TSP.2016.2539143. Epub 2016 Mar 7.
6
Adaptive Incremental Mixture Markov Chain Monte Carlo.
J Comput Graph Stat. 2019;28(4):790-805. doi: 10.1080/10618600.2019.1598872. Epub 2019 Jun 7.
7
Probability density function estimation of laser light scintillation via Bayesian mixtures.
J Opt Soc Am A Opt Image Sci Vis. 2014 Mar 1;31(3):580-90. doi: 10.1364/JOSAA.31.000580.
10
Searching for efficient Markov chain Monte Carlo proposal kernels.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19307-12. doi: 10.1073/pnas.1311790110. Epub 2013 Nov 11.

引用本文的文献

2
Statistical inference for dependence networks in topological data analysis.
Front Artif Intell. 2023 Dec 14;6:1293504. doi: 10.3389/frai.2023.1293504. eCollection 2023.

本文引用的文献

1
Empirical Frequency Band Analysis of Nonstationary Time Series.
J Am Stat Assoc. 2020;115(532):1933-1945. doi: 10.1080/01621459.2019.1671199. Epub 2019 Oct 28.
2
A Hierarchical Bayesian Model for Differential Connectivity in Multi-trial Brain Signals.
Econom Stat. 2020 Jul;15:117-135. doi: 10.1016/j.ecosta.2020.03.009. Epub 2020 May 20.
3
A nonparametric Bayesian model for estimating spectral densities of resting-state EEG twin data.
Biometrics. 2022 Mar;78(1):313-323. doi: 10.1111/biom.13393. Epub 2020 Oct 26.
5
Peak alpha frequency is a neural marker of cognitive function across the autism spectrum.
Eur J Neurosci. 2018 Mar;47(6):643-651. doi: 10.1111/ejn.13645. Epub 2017 Aug 1.
7
Rhythms of the hippocampal network.
Nat Rev Neurosci. 2016 Apr;17(4):239-49. doi: 10.1038/nrn.2016.21. Epub 2016 Mar 10.
8
Functional mixed effects spectral analysis.
Biometrika. 2011 Sep;98(3):583-598. doi: 10.1093/biomet/asr032.
9
Nonspatial Sequence Coding in CA1 Neurons.
J Neurosci. 2016 Feb 3;36(5):1547-63. doi: 10.1523/JNEUROSCI.2874-15.2016.
10
An exploratory data analysis of electroencephalograms using the functional boxplots approach.
Front Neurosci. 2015 Aug 19;9:282. doi: 10.3389/fnins.2015.00282. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验