Suppr超能文献

一种用于异质空间自回归模型的半参数贝叶斯方法。

A Semiparametric Bayesian Approach to Heterogeneous Spatial Autoregressive Models.

作者信息

Liu Ting, Xu Dengke, Ke Shiqi

机构信息

School of Economics, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

Entropy (Basel). 2024 Jun 7;26(6):498. doi: 10.3390/e26060498.

Abstract

Many semiparametric spatial autoregressive (SSAR) models have been used to analyze spatial data in a variety of applications; however, it is a common phenomenon that heteroscedasticity often occurs in spatial data analysis. Therefore, when considering SSAR models in this paper, it is allowed that the variance parameters of the models can depend on the explanatory variable, and these are called heterogeneous semiparametric spatial autoregressive models. In order to estimate the model parameters, a Bayesian estimation method is proposed for heterogeneous SSAR models based on B-spline approximations of the nonparametric function. Then, we develop an efficient Markov chain Monte Carlo sampling algorithm on the basis of the Gibbs sampler and Metropolis-Hastings algorithm that can be used to generate posterior samples from posterior distributions and perform posterior inference. Finally, some simulation studies and real data analysis of Boston housing data have demonstrated the excellent performance of the proposed Bayesian method.

摘要

许多半参数空间自回归(SSAR)模型已被用于分析各种应用中的空间数据;然而,在空间数据分析中异方差性经常出现是一种常见现象。因此,在本文考虑SSAR模型时,允许模型的方差参数依赖于解释变量,这些被称为异质半参数空间自回归模型。为了估计模型参数,基于非参数函数的B样条近似,提出了一种针对异质SSAR模型的贝叶斯估计方法。然后,我们基于吉布斯采样器和梅特罗波利斯-黑斯廷斯算法开发了一种高效的马尔可夫链蒙特卡罗采样算法,该算法可用于从后验分布生成后验样本并进行后验推断。最后,一些模拟研究以及对波士顿住房数据的实际数据分析证明了所提出的贝叶斯方法的优异性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b4/11202523/68a6db3ba1f4/entropy-26-00498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验