Suppr超能文献

RIG-I 激动剂经鼻腔递送可激活小鼠肺部髓系细胞。

Intranasal Delivery of RIG-I Agonist Drives Pulmonary Myeloid Cell Activation in Mice.

机构信息

School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.

出版信息

Front Immunol. 2022 Jun 15;13:910192. doi: 10.3389/fimmu.2022.910192. eCollection 2022.

Abstract

Viral respiratory infections cause substantial health and economic burden. There is a pressing demand for efficacious vaccination strategies and, therefore, a need for a better understanding of the mechanisms of action of novel potential adjuvants. Here we investigated the effect of a synthetic RIG-I agonist, the dsRNA hairpin 3p10LA9, on the activation of pulmonary myeloid cells. Analysis of early innate immune responses revealed that a single intranasal 3p10LA9 dose induces a transient pulmonary interferon-stimulated gene (ISG) and pro-inflammatory cytokine/chemokine response, which leads to the maturation of three distinct dendritic cell subpopulations in the lungs. While lung resident dendritic cell decrease shortly after 3p10LA9 delivery, their numbers increase in the draining mediastinal lymph node, where they have migrated, maintaining their activated phenotype. At the same time, dsRNA hairpin-induced chemokines attract transiently infiltrating monocytes into the lungs, which causes a short temporary pulmonary inflammation. However, these monocytes are dispensable in controlling influenza infection since in CCR2 deficient mice, lacking these infiltrating cells, the virus load was similar to the wild type mice when infected with the influenza virus at a sublethal dose. In summary, our data suggest that intranasal delivery of dsRNA hairpins, used as a RIG-I targeting adjuvant, represents an attractive strategy to boost type I inteferon-mediated lung dendritic cell maturation, which supports viral reduction in the lungs during infection.

摘要

病毒呼吸道感染会造成严重的健康和经济负担。人们迫切需要有效的疫苗接种策略,因此需要更好地了解新型潜在佐剂的作用机制。在这里,我们研究了一种合成 RIG-I 激动剂,双链 RNA 发夹 3p10LA9,对肺部髓样细胞激活的影响。早期先天免疫反应的分析表明,单次鼻腔内 3p10LA9 剂量会诱导短暂的肺部干扰素刺激基因(ISG)和促炎细胞因子/趋化因子反应,从而导致肺部三种不同树突状细胞亚群的成熟。虽然 3p10LA9 给药后肺驻留树突状细胞数量短暂减少,但它们在引流的纵隔淋巴结中数量增加,在那里它们已经迁移并保持激活表型。与此同时,dsRNA 发夹诱导的趋化因子会短暂地将浸润的单核细胞吸引到肺部,导致短暂的肺部炎症。然而,这些单核细胞在控制流感感染中是可有可无的,因为在 CCR2 缺陷小鼠中,缺乏这些浸润细胞,当用亚致死剂量的流感病毒感染时,病毒载量与野生型小鼠相似。总之,我们的数据表明,作为 RIG-I 靶向佐剂的 dsRNA 发夹的鼻腔内给药代表了一种有吸引力的策略,可以促进 I 型干扰素介导的肺部树突状细胞成熟,从而在感染期间支持肺部病毒减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c4/9241514/7802161ab925/fimmu-13-910192-g001.jpg

相似文献

1
Intranasal Delivery of RIG-I Agonist Drives Pulmonary Myeloid Cell Activation in Mice.
Front Immunol. 2022 Jun 15;13:910192. doi: 10.3389/fimmu.2022.910192. eCollection 2022.
3
Enhanced Influenza Virus-Like Particle Vaccination with a Structurally Optimized RIG-I Agonist as Adjuvant.
J Virol. 2015 Oct;89(20):10612-24. doi: 10.1128/JVI.01526-15. Epub 2015 Aug 12.
4
CCR2 Regulates Vaccine-Induced Mucosal T-Cell Memory to Influenza A Virus.
J Virol. 2021 Jul 12;95(15):e0053021. doi: 10.1128/JVI.00530-21.
5
Combined Intranasal Nanoemulsion and RIG-I Activating RNA Adjuvants Enhance Mucosal, Humoral, and Cellular Immunity to Influenza Virus.
Mol Pharm. 2021 Feb 1;18(2):679-698. doi: 10.1021/acs.molpharmaceut.0c00315. Epub 2020 Jun 15.
6
Coexpressed RIG-I agonist enhances humoral immune response to influenza virus DNA vaccine.
J Virol. 2011 Feb;85(3):1370-83. doi: 10.1128/JVI.01250-10. Epub 2010 Nov 24.
8
A Sendai virus-derived RNA agonist of RIG-I as a virus vaccine adjuvant.
J Virol. 2013 Feb;87(3):1290-300. doi: 10.1128/JVI.02338-12. Epub 2012 Nov 21.
9
CD47 Plays a Role as a Negative Regulator in Inducing Protective Immune Responses to Vaccination against Influenza Virus.
J Virol. 2016 Jul 11;90(15):6746-6758. doi: 10.1128/JVI.00605-16. Print 2016 Aug 1.

本文引用的文献

1
RIG-I-induced innate antiviral immunity protects mice from lethal SARS-CoV-2 infection.
Mol Ther Nucleic Acids. 2022 Mar 8;27:1225-1234. doi: 10.1016/j.omtn.2022.02.008. Epub 2022 Feb 13.
2
A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice.
J Exp Med. 2022 Jan 3;219(1). doi: 10.1084/jem.20211818. Epub 2021 Nov 10.
3
Mucosal vaccines - fortifying the frontiers.
Nat Rev Immunol. 2022 Apr;22(4):236-250. doi: 10.1038/s41577-021-00583-2. Epub 2021 Jul 26.
4
Emerging concepts in the science of vaccine adjuvants.
Nat Rev Drug Discov. 2021 Jun;20(6):454-475. doi: 10.1038/s41573-021-00163-y. Epub 2021 Apr 6.
5
Combined Intranasal Nanoemulsion and RIG-I Activating RNA Adjuvants Enhance Mucosal, Humoral, and Cellular Immunity to Influenza Virus.
Mol Pharm. 2021 Feb 1;18(2):679-698. doi: 10.1021/acs.molpharmaceut.0c00315. Epub 2020 Jun 15.
6
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection.
Immunity. 2020 Jun 16;52(6):1039-1056.e9. doi: 10.1016/j.immuni.2020.04.005. Epub 2020 May 8.
7
RIG-I-like receptors: their regulation and roles in RNA sensing.
Nat Rev Immunol. 2020 Sep;20(9):537-551. doi: 10.1038/s41577-020-0288-3. Epub 2020 Mar 13.
8
Intratumoral delivery of RIG-I agonist SLR14 induces robust antitumor responses.
J Exp Med. 2019 Dec 2;216(12):2854-2868. doi: 10.1084/jem.20190801. Epub 2019 Oct 10.
9
Structure-guided design of immunomodulatory RNAs specifically targeting the cytoplasmic viral RNA sensor RIG-I.
FEBS Lett. 2019 Nov;593(21):3003-3014. doi: 10.1002/1873-3468.13564. Epub 2019 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验