文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

疫苗佐剂科学中的新观点。

Emerging concepts in the science of vaccine adjuvants.

机构信息

Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.

Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.

出版信息

Nat Rev Drug Discov. 2021 Jun;20(6):454-475. doi: 10.1038/s41573-021-00163-y. Epub 2021 Apr 6.


DOI:10.1038/s41573-021-00163-y
PMID:33824489
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8023785/
Abstract

Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.

摘要

佐剂是增强免疫反应的幅度、广度和持久性的疫苗成分。自 20 世纪 20 年代问世以来,明矾是接下来 70 年中唯一获准用于人类的佐剂。自 20 世纪 90 年代以来,又有五种佐剂被纳入许可疫苗中,但这些佐剂的作用机制仍部分未知。然而,我们对通过模式识别受体(PRR)激活先天免疫系统的理解的革命性进展正在提高对佐剂的机制理解,最近的概念进展强调了这样一种观点,即组织损伤、不同形式的细胞死亡以及代谢和营养传感器都可以调节先天免疫系统以激活适应性免疫。此外,最近在利用系统生物学来探测驱动疫苗免疫反应的分子网络(“系统疫苗学”)方面的进展正在揭示机制见解,并为疫苗发现和开发过程提供了新的范例。在这里,我们回顾了佐剂的“已知的已知”和“已知的未知”,讨论了这些新出现的概念,并强调了我们对先天免疫和系统疫苗学的不断增长的认识如何使针对 COVID-19 和未来大流行的新型佐剂的科学和开发焕发生机。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/4d77b5cfb59c/41573_2021_163_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/177cf9f345c4/41573_2021_163_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/bda183800f90/41573_2021_163_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/6d789144087a/41573_2021_163_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/4d77b5cfb59c/41573_2021_163_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/177cf9f345c4/41573_2021_163_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/bda183800f90/41573_2021_163_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/6d789144087a/41573_2021_163_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bc/8023785/4d77b5cfb59c/41573_2021_163_Fig4_HTML.jpg

相似文献

[1]
Emerging concepts in the science of vaccine adjuvants.

Nat Rev Drug Discov. 2021-6

[2]
The continued advance of vaccine adjuvants - 'we can work it out'.

Semin Immunol. 2020-8

[3]
The immunology of SARS-CoV-2 infections and vaccines.

Semin Immunol. 2020-8

[4]
MVA-based SARS-CoV-2 vaccine candidates encoding different spike protein conformations induce distinct early transcriptional responses which may impact subsequent adaptive immunity.

Front Immunol. 2024-12-19

[5]
Epigenetic adjuvants: durable reprogramming of the innate immune system with adjuvants.

Curr Opin Immunol. 2022-8

[6]
cGAS-STING pathway agonists are promising vaccine adjuvants.

Med Res Rev. 2024-7

[7]
Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development.

Trends Biotechnol. 2018-11-21

[8]
Selection of adjuvants for vaccines targeting specific pathogens.

Expert Rev Vaccines. 2019-4-22

[9]
STING agonists as promising vaccine adjuvants to boost immunogenicity against SARS-related coronavirus derived infection: possible role of autophagy.

Cell Commun Signal. 2024-6-3

[10]
Toward precision adjuvants: optimizing science and safety.

Curr Opin Pediatr. 2020-2

引用本文的文献

[1]
Development and Evaluation of Dual Microneedle Array Patch for Sequential Intradermal Delivery of Adjuvant and Antigen.

Pharm Res. 2025-9-4

[2]
Leishmania pyruvate kinase and mitochondrial processing protease: Two novel vaccine candidates, selected via a seroproteomic approach, trigger a protective immune response against murine cutaneous leishmaniasis.

Med Microbiol Immunol. 2025-9-3

[3]
Comparative Analysis of Chitosan, Lipid Nanoparticles, and Alum Adjuvants in Recombinant SARS-CoV-2 Vaccine: An Evaluation of Their Immunogenicity and Serological Efficacy.

Vaccines (Basel). 2025-7-24

[4]
The Elicitation of an Antigen-Specific Antibody Immune Response Using a Nanoparticulate Adjuvant Derived from .

Molecules. 2025-8-9

[5]
Leaf Saponins of as Powerful Vaccine Adjuvants.

Pharmaceutics. 2025-7-25

[6]
Synergistic Enhancement of Vaccine Efficacy Through EF-1α Antigen and Chicken XCL1 Chemokine Adjuvant Combination.

Animals (Basel). 2025-8-8

[7]
Distinct humoral responses induced by heterologous versus homologous prime-boost immunization strategies in early life.

Front Immunol. 2025-8-7

[8]
Var. Extract Acts as an Adjuvant to Promote Natural Killer Cell Activation by Nasal Influenza Vaccine.

Food Sci Nutr. 2025-8-19

[9]
Advances in nanotechnology-enabled adjuvants for peptide-based cancer vaccines.

Nano Res. 2025-7

[10]
Dose-sparing effects of novel adjuvants and aluminum hydroxide on two different vaccines in a neonatal mouse model.

Front Immunol. 2025-7-31

本文引用的文献

[1]
Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial.

Lancet Infect Dis. 2021-7

[2]
Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial.

Lancet Infect Dis. 2021-5

[3]
Modeling human adaptive immune responses with tonsil organoids.

Nat Med. 2021-1

[4]
Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial.

Lancet Infect Dis. 2021-2

[5]
gene.iobio: an interactive web tool for versatile, clinically-driven variant interrogation and prioritization.

medRxiv. 2020-11-6

[6]
Injectable Hydrogels for Sustained Codelivery of Subunit Vaccines Enhance Humoral Immunity.

ACS Cent Sci. 2020-10-28

[7]
Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial.

Lancet Infect Dis. 2021-1

[8]
COVID-19 vaccine BNT162b1 elicits human antibody and T1 T cell responses.

Nature. 2020-9-30

[9]
The science and medicine of human immunology.

Science. 2020-9-25

[10]
Phase 1-2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine.

N Engl J Med. 2020-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索