Suppr超能文献

在重组系统中对SGLT1进行建模揭示了葡萄糖摄取明显的离子依赖性,并强化了水可渗透脱辅基状态的概念。

Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States.

作者信息

Barta Thomas, Sandtner Walter, Wachlmayr Johann, Hannesschlaeger Christof, Ebert Andrea, Speletz Armin, Horner Andreas

机构信息

Department of Molecular Biophysics and Membrane Biophysics, Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.

Center of Physiology and Pharmacology, Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Medical University of Vienna, Vienna, Austria.

出版信息

Front Physiol. 2022 Jun 15;13:874472. doi: 10.3389/fphys.2022.874472. eCollection 2022.

Abstract

The reconstitution of secondary active transporters into liposomes shed light on their molecular transport mechanism. The latter are either symporters, antiporters or exchangers, which use the energy contained in the electrochemical gradient of ions to fuel concentrative uptake of their cognate substrate. In liposomal preparations, these gradients can be set by the experimenter. However, due to passive diffusion of the ions and solutes through the membrane, the gradients are not stable and little is known on the time course by which they dissipate and how the presence of a transporter affects this process. Gradient dissipation can also generate a transmembrane potential (V). Because it is the effective ion gradient, which together with V fuels concentrative uptake, knowledge on how these parameters change within the time frame of the conducted experiment is key to understanding experimental outcomes. Here, we addressed this problem by resorting to a modelling approach. To this end, we mathematically modeled the liposome in the assumed presence and absence of the sodium glucose transporter 1 (SGLT1). We show that 1) the model can prevent us from reaching erroneous conclusions on the driving forces of substrate uptake and we 2) demonstrate utility of the model in the assignment of the states of SGLT1, which harbor a water channel.

摘要

将次级主动转运蛋白重组到脂质体中有助于揭示其分子转运机制。后者包括同向转运体、反向转运体或交换体,它们利用离子电化学梯度中所含的能量来推动其同源底物的浓缩摄取。在脂质体制备中,这些梯度可由实验者设定。然而,由于离子和溶质通过膜的被动扩散,这些梯度并不稳定,关于它们消散的时间进程以及转运蛋白的存在如何影响这一过程,人们了解甚少。梯度消散也会产生跨膜电位(V)。由于是有效离子梯度与V共同推动浓缩摄取,了解这些参数在实验进行的时间范围内如何变化是理解实验结果的关键。在此,我们通过采用建模方法解决了这个问题。为此,我们对假定存在和不存在钠葡萄糖转运蛋白1(SGLT1)的脂质体进行了数学建模。我们表明:1)该模型可防止我们在底物摄取驱动力方面得出错误结论;2)证明了该模型在确定含有水通道的SGLT1状态方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07f4/9242095/906060facb5a/fphys-13-874472-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验