Department of Educational Psychology, University of Wisconsin-Madison.
Psychol Methods. 2024 Jun;29(3):537-560. doi: 10.1037/met0000510. Epub 2022 Jul 4.
Single-case experimental designs (SCEDs) are used to study the effects of interventions on the behavior of individual cases, by making comparisons between repeated measurements of an outcome under different conditions. In research areas where SCEDs are prevalent, there is a need for methods to synthesize results across multiple studies. One approach to synthesis uses a multilevel meta-analysis (MLMA) model to describe the distribution of effect sizes across studies and across cases within studies. However, MLMA relies on having accurate sampling variances of effect size estimates for each case, which may not be possible due to auto-correlation in the raw data series. One possible solution is to combine MLMA with robust variance estimation (RVE), which provides valid assessments of uncertainty even if the sampling variances of effect size estimates are inaccurate. Another possible solution is to forgo MLMA and use simpler, ordinary least squares (OLS) methods with RVE. This study evaluates the performance of effect size estimators and methods of synthesizing SCEDs in the presence of auto-correlation, for several different effect size metrics, via a Monte Carlo simulation designed to emulate the features of real data series. Results demonstrate that the MLMA model with RVE performs properly in terms of bias, accuracy, and confidence interval coverage for estimating overall average log response ratios. The OLS estimator corrected with RVE performs the best in estimating overall average Tau effect sizes. None of the available methods perform adequately for meta-analysis of within-case standardized mean differences. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
单案例实验设计 (SCED) 用于通过比较不同条件下同一结果的重复测量来研究干预对个体案例行为的影响。在 SCED 普遍应用的研究领域,需要有方法来综合多个研究的结果。一种综合方法是使用多层次元分析 (MLMA) 模型来描述研究之间和研究内案例之间的效应量分布。然而,MLMA 依赖于对每个案例的效应量估计值具有准确的抽样方差,由于原始数据序列的自相关,这可能是不可能的。一种可能的解决方案是将 MLMA 与稳健方差估计 (RVE) 相结合,即使效应量估计值的抽样方差不准确,RVE 也可以提供有效的不确定性评估。另一种可能的解决方案是放弃 MLMA 并使用具有 RVE 的更简单的普通最小二乘法 (OLS) 方法。本研究通过旨在模拟真实数据序列特征的蒙特卡罗模拟,评估了在存在自相关的情况下,几种不同效应量指标的效应量估计值和 SCED 综合方法的性能。结果表明,对于估计总体平均对数响应比,具有 RVE 的 MLMA 模型在偏差、准确性和置信区间覆盖方面表现良好。经 RVE 校正的 OLS 估计值在估计总体平均 Tau 效应量方面表现最佳。在对案例内标准化均数差异进行荟萃分析时,没有一种可用的方法表现得足够好。(PsycInfo 数据库记录 (c) 2024 APA,保留所有权利)。