Suppr超能文献

评估元回归方法以检验与依存效应大小的调节关系:一项蒙特卡罗模拟。

Assessing meta-regression methods for examining moderator relationships with dependent effect sizes: A Monte Carlo simulation.

机构信息

University of Bristol, Bristol, UK.

University of Leuven, Leuven, Belgium.

出版信息

Res Synth Methods. 2017 Dec;8(4):435-450. doi: 10.1002/jrsm.1245. Epub 2017 May 28.

Abstract

Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we compared the performance of 2 methods for meta-regression with dependent effect sizes-robust variance estimation (RVE) and 3-level modeling-with the standard meta-analytic method for independent effect sizes. We further compared bias-reduced linearization and jackknife estimators as small-sample adjustments for RVE and Wald-type and likelihood ratio tests for 3-level models. The bias in the slope estimates, width of the confidence intervals around those estimates, and empirical type I error and statistical power rates of the hypothesis tests from these different methods were compared for mixed-effects meta-regression analysis with one moderator either at the study or at the effect size level. All methods yielded nearly unbiased slope estimates under most scenarios, but as expected, the standard method ignoring dependency provided inflated type I error rates when testing the significance of the moderators. Robust variance estimation methods yielded not only the best results in terms of type I error rate but also the widest confidence intervals and the lowest power rates, especially when using the jackknife adjustments. Three-level models showed a promising performance with a moderate to large number of studies, especially with the likelihood ratio test, and yielded narrower confidence intervals around the slope and higher power rates than those obtained with the RVE approach. All methods performed better when the moderator was at the effect size level, the number of studies was moderate to large, and the between-studies variance was small. Our results can help meta-analysts deal with dependency in their data.

摘要

依赖效应大小在荟萃分析中普遍存在。我们使用蒙特卡罗模拟,比较了 2 种用于具有依赖效应大小的元回归的方法-稳健方差估计(RVE)和 3 水平模型-与独立效应大小的标准元分析方法的性能。我们进一步比较了作为 RVE 的小样本调整的偏置减少线性化和刀切估计值,以及 3 水平模型的 Wald 型和似然比检验。对于具有一个在研究或效应大小水平上的调节变量的混合效应元回归分析,比较了这些不同方法的斜率估计值的偏差、这些估计值周围的置信区间的宽度以及假设检验的经验 I 型错误和统计功效率。在大多数情况下,所有方法都产生了几乎无偏差的斜率估计值,但正如预期的那样,忽略依赖性的标准方法在测试调节变量的显著性时会产生过高的 I 型错误率。稳健方差估计方法不仅在 I 型错误率方面取得了最佳结果,而且置信区间最宽,功效率最低,尤其是在使用刀切调整时。3 水平模型在具有中等至大量研究的情况下表现出有希望的性能,尤其是在使用似然比检验时,并且在斜率周围产生了更窄的置信区间和更高的功效率,而与 RVE 方法相比。当调节变量在效应大小水平上、研究数量中等至较大以及研究间方差较小时,所有方法的性能都更好。我们的结果可以帮助元分析人员处理数据中的依赖性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验