Suppr超能文献

一种基于多级约束的肺穿刺路径规划方法

[A method of lung puncture path planning based on multi-level constraint].

作者信息

Sun Fenghui, Pei Hongliang, Yang Yifei, Fan Qingwen, Li Xiao'ou

机构信息

School of Mechanical Engineering, Sichuan University, Chengdu 610065, P. R. China.

Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Jun 25;39(3):462-470. doi: 10.7507/1001-5515.202112029.

Abstract

Percutaneous pulmonary puncture guided by computed tomography (CT) is one of the most effective tools for obtaining lung tissue and diagnosing lung cancer. Path planning is an important procedure to avoid puncture complications and reduce patient pain and puncture mortality. In this work, a path planning method for lung puncture is proposed based on multi-level constraints. A digital model of the chest is firstly established using patient's CT image. A Fibonacci lattice sampling is secondly conducted on an ideal sphere centered on the tumor lesion in order to obtain a set of candidate paths. Finally, by considering clinical puncture guidelines, an optimal path can be obtained by a proposed multi-level constraint strategy, which is combined with oriented bounding box tree (OBBTree) algorithm and Pareto optimization algorithm. Results of simulation experiments demonstrated the effectiveness of the proposed method, which has good performance for avoiding physical and physiological barriers. Hence, the method could be used as an aid for physicians to select the puncture path.

摘要

计算机断层扫描(CT)引导下的经皮肺穿刺是获取肺组织和诊断肺癌最有效的工具之一。路径规划是避免穿刺并发症、减轻患者痛苦和降低穿刺死亡率的重要步骤。在这项工作中,提出了一种基于多级约束的肺穿刺路径规划方法。首先利用患者的CT图像建立胸部数字模型。其次,在以肿瘤病灶为中心的理想球体上进行斐波那契晶格采样,以获得一组候选路径。最后,通过考虑临床穿刺指南,结合定向包围盒树(OBBTree)算法和帕累托优化算法,采用提出的多级约束策略获得最优路径。仿真实验结果证明了该方法的有效性,该方法在避开物理和生理障碍方面具有良好性能。因此,该方法可作为医生选择穿刺路径的辅助工具。

相似文献

1
[A method of lung puncture path planning based on multi-level constraint].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Jun 25;39(3):462-470. doi: 10.7507/1001-5515.202112029.
3
An Automatic Needle Puncture Path-Planning Method for Thermal Ablation of Lung Tumors.
Diagnostics (Basel). 2024 Jan 19;14(2):215. doi: 10.3390/diagnostics14020215.
4
A lung biopsy path planning algorithm based on the double spherical constraint Pareto and indicators' importance-correlation degree.
Comput Med Imaging Graph. 2024 Oct;117:102426. doi: 10.1016/j.compmedimag.2024.102426. Epub 2024 Aug 31.
5
Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors.
Comput Biol Med. 2022 Jun;145:105506. doi: 10.1016/j.compbiomed.2022.105506. Epub 2022 Apr 9.
6
Path planning for percutaneous lung biopsy based on the loose-Pareto and adaptive heptagonal optimization method.
Med Biol Eng Comput. 2023 Jun;61(6):1449-1472. doi: 10.1007/s11517-022-02754-2. Epub 2023 Feb 7.
7
Flexible needle puncture path planning for liver tumors based on deep reinforcement learning.
Phys Med Biol. 2022 Sep 26;67(19). doi: 10.1088/1361-6560/ac8fdd.
8
Lung nodule pre-diagnosis and insertion path planning for chest CT images.
BMC Med Imaging. 2023 Feb 3;23(1):22. doi: 10.1186/s12880-023-00973-z.
9
Method for puncture trajectory planning in liver tumors thermal ablation based on NSGA-III.
Technol Health Care. 2022;30(5):1243-1256. doi: 10.3233/THC-213592.
10
A robotic system for transthoracic puncture of pulmonary nodules based on gated respiratory compensation.
Comput Methods Programs Biomed. 2024 Feb;244:107995. doi: 10.1016/j.cmpb.2023.107995. Epub 2023 Dec 23.

本文引用的文献

1
Cancer statistics for the year 2020: An overview.
Int J Cancer. 2021 Apr 5. doi: 10.1002/ijc.33588.
2
Extraction of pulmonary Trachea by dynamic tubular edge contour algorithm.
Ann Transl Med. 2020 Dec;8(24):1636. doi: 10.21037/atm-20-7300.
3
Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
Med Phys. 2019 May;46(5):2157-2168. doi: 10.1002/mp.13458. Epub 2019 Mar 22.
4
Massive hemothorax after computed tomography-guided lung tumor biopsy: An unusual but disastrous complication.
Thorac Cancer. 2018 Jul;9(7):892-896. doi: 10.1111/1759-7714.12769. Epub 2018 May 23.
5
Complication rates of CT-guided transthoracic lung biopsy: meta-analysis.
Eur Radiol. 2017 Jan;27(1):138-148. doi: 10.1007/s00330-016-4357-8. Epub 2016 Apr 23.
6
Interactive multi-criteria planning for radiofrequency ablation.
Int J Comput Assist Radiol Surg. 2015 Jun;10(6):879-89. doi: 10.1007/s11548-015-1201-6. Epub 2015 Apr 23.
7
3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
8
Computer-assisted trajectory planning for percutaneous needle insertions.
Med Phys. 2011 Jun;38(6):3246-59. doi: 10.1118/1.3590374.
9
Visualization support for the planning of hepatic needle placement.
Int J Comput Assist Radiol Surg. 2012 Mar;7(2):191-7. doi: 10.1007/s11548-011-0624-y. Epub 2011 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验