Suppr超能文献

基于间接遥感的近实时监测多样性模式的框架及其在巴西大西洋雨林中的应用。

A framework for near-real time monitoring of diversity patterns based on indirect remote sensing, with an application in the Brazilian Atlantic rainforest.

机构信息

Department of Biology, City College of New York, New York, NY, United States of America.

Ph.D Program in Biology, City University of New York, Graduate School and University Center, New York, NY, United States of America.

出版信息

PeerJ. 2022 Jun 29;10:e13534. doi: 10.7717/peerj.13534. eCollection 2022.

Abstract

Monitoring biodiversity change is key to effective conservation policy. While it is difficult to establish biodiversity monitoring programs at broad geographical scales, remote sensing advances allow for near-real time Earth observations that may help with this goal. We combine periodical and freely available remote sensing information describing temperature and precipitation with curated biological information from several groups of animals and plants in the Brazilian Atlantic rainforest to design an indirect remote sensing framework that monitors potential loss and gain of biodiversity in near-real time. Using data from biological collections and information from repeated field inventories, we demonstrate that this framework has the potential to accurately predict trends of biodiversity change for both taxonomic and phylogenetic diversity. The framework identifies areas of potential diversity loss more accurately than areas of species gain, and performs best when applied to broadly distributed groups of animals and plants.

摘要

监测生物多样性变化是制定有效保护政策的关键。虽然在广泛的地理范围内建立生物多样性监测计划具有一定难度,但遥感技术的进步使得我们可以进行近乎实时的地球观测,这可能有助于实现这一目标。我们结合定期的、免费的遥感信息,描述温度和降水,以及来自巴西大西洋雨林中几个动植物群体的精选生物信息,设计了一个间接的遥感框架,以实时监测生物多样性的潜在损失和增益。我们利用生物多样性收集的数据和重复实地调查的信息,证明该框架具有准确预测生物多样性变化趋势的潜力,无论是在分类学还是系统发育多样性方面。该框架在识别潜在的多样性损失区域方面比识别物种增益区域更为准确,并且在应用于广泛分布的动植物群体时表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11db/9250313/716b63068998/peerj-10-13534-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验