Suppr超能文献

基于代码算法在大型美国行政索赔数据库中识别尿路感染的性能特征。

Performance characteristics of code-based algorithms to identify urinary tract infections in large United States administrative claims databases.

机构信息

Janssen Research & Development, Observational Health Data Analytics, Raritan, New Jersey, USA.

Janssen Vaccines, Branch of Cilag GmbH International, Bern, Switzerland.

出版信息

Pharmacoepidemiol Drug Saf. 2022 Sep;31(9):953-962. doi: 10.1002/pds.5492. Epub 2022 Jul 4.

Abstract

BACKGROUND

In real-world evidence research, reliability of coding in healthcare databases dictates the accuracy of code-based algorithms in identifying conditions such as urinary tract infection (UTI). This study evaluates the performance characteristics of code-based algorithms to identify UTI.

METHODS

Retrospective observational study of adults contained within three large U.S. administrative claims databases on or after January 1, 2010. A targeted literature review was performed to inform the development of 10 code-based algorithms to identify UTIs consisting of combinations of diagnosis codes, antibiotic exposure for the treatment of UTIs, and/or ordering of a urinalysis or urine culture. For each database, a probabilistic gold standard was developed using PheValuator. The performance characteristics of each code-based algorithm were assessed compared with the probabilistic gold standard.

RESULTS

A total of 2 950 641, 1 831 405, and 2 294 929 patients meeting study criteria were identified in each database. Overall, the code-based algorithm requiring a primary UTI diagnosis code achieved the highest positive predictive values (PPV; >93.8%) but the lowest sensitivities (<12.9%). Algorithms requiring three UTI diagnosis codes achieved similar PPV (>0.899%) and improved sensitivity (<41.6%). Algorithms requiring a single UTI diagnosis code in any position achieved the highest sensitivities (>72.1%) alongside a slight reduction in PPVs (<78.3%). All-time prevalence estimates of UTI ranged from 21.6% to 48.6%.

CONCLUSIONS

Based on these findings, we recommend use of algorithms requiring a single UTI diagnosis code, which achieved high sensitivity and PPV. In studies where PPV is critical, we recommend code-based algorithms requiring three UTI diagnosis codes rather than a single primary UTI diagnosis code.

摘要

背景

在真实世界证据研究中,医疗数据库中的编码可靠性决定了基于代码的算法在识别尿路感染(UTI)等疾病方面的准确性。本研究评估了基于代码的算法识别 UTI 的性能特征。

方法

这是一项回顾性观察研究,纳入了 2010 年 1 月 1 日或之后来自三个美国大型行政索赔数据库的成年人。进行了针对性的文献回顾,以制定 10 种基于代码的算法来识别 UTI,这些算法由诊断代码、用于治疗 UTI 的抗生素暴露以及/或尿液分析或尿液培养的医嘱组合而成。对于每个数据库,使用 PheValuator 开发了概率性黄金标准。评估了每种基于代码的算法与概率性黄金标准的性能特征。

结果

每个数据库中分别有 2950641 例、1831405 例和 2294929 例符合研究标准的患者。总体而言,需要主要 UTI 诊断代码的基于代码的算法获得了最高的阳性预测值(PPV;>93.8%),但敏感性最低(<12.9%)。需要三个 UTI 诊断代码的算法实现了类似的 PPV(>0.899%)和改善的敏感性(<41.6%)。在任何位置仅需要一个 UTI 诊断代码的算法获得了最高的敏感性(>72.1%),同时略微降低了 PPV(<78.3%)。所有时间 UTI 的流行率估计值从 21.6%到 48.6%不等。

结论

根据这些发现,我们建议使用需要单个 UTI 诊断代码的算法,该算法具有较高的敏感性和 PPV。在 PPV 至关重要的研究中,我们建议使用需要三个 UTI 诊断代码的基于代码的算法,而不是单个主要 UTI 诊断代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验