School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China.
School of Science, Tibet University, Lhasa, 850000, P.R. China.
ChemSusChem. 2022 Sep 7;15(17):e202201074. doi: 10.1002/cssc.202201074. Epub 2022 Jul 19.
In recent years, electrocatalysis was progressively developed to facilitate the selective oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) towards the value-added chemical 2,5-furandicarboxylic acid (FDCA). Among reported electrocatalysts, alloy materials have demonstrated superior electrocatalytic properties due to their tunable electronic and geometric properties. However, a specific discussion of the potential impacts of alloy structures on the electrocatalytic HMF oxidation performance has not yet been presented in available Reviews. In this regard, this Review introduces the most recent perspectives on the alloy-driven electrocatalysis for HMF oxidation towards FDCA, including oxidation mechanism, alloy nanostructure modulation, and external conditions control. Particularly, modulation strategies for electronic and geometric structures of alloy electrocatalysts have been discussed. Challenges and suggestions are also provided for the rational design of alloy electrocatalysts. The viewpoints presented herein are anticipated to potentially contribute to a further development of alloy-driven electrocatalytic oxidation of HMF towards FDCA and to help boost a more sustainable and efficient biomass refining system.
近年来,电催化技术逐渐发展,以促进生物质衍生的 5-羟甲基糠醛(HMF)向高附加值化学品 2,5-呋喃二甲酸(FDCA)的选择性氧化。在报道的电催化剂中,由于其可调谐的电子和几何性质,合金材料表现出了优异的电催化性能。然而,在现有的综述中,尚未对合金结构对电催化 HMF 氧化性能的潜在影响进行具体讨论。在这方面,本综述介绍了最近在合金驱动的 HMF 氧化为 FDCA 的电催化方面的观点,包括氧化机制、合金纳米结构调制和外部条件控制。特别讨论了合金电催化剂的电子和几何结构的调制策略。还为合金电催化剂的合理设计提供了挑战和建议。本文提出的观点有望为进一步发展合金驱动的 HMF 电催化氧化为 FDCA 做出贡献,并有助于推动更可持续和高效的生物质精炼系统。