Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden.
Breast Cancer Res Treat. 2022 Aug;194(3):577-586. doi: 10.1007/s10549-022-06636-x. Epub 2022 Jul 5.
PURPOSE: The need for sentinel lymph node biopsy (SLNB) in clinically node-negative (cN0) patients is currently questioned. Our objective was to investigate the cost-effectiveness of a preoperative noninvasive lymph node staging (NILS) model (an artificial neural network model) for predicting pathological nodal status in patients with cN0 breast cancer (BC). METHODS: A health-economic decision-analytic model was developed to evaluate the utility of the NILS model in reducing the proportion of cN0 patients with low predicted risk undergoing SLNB. The model used information from a national registry and published studies, and three sensitivity/specificity scenarios of the NILS model were evaluated. Subgroup analysis explored the outcomes of breast-conserving surgery (BCS) or mastectomy. The results are presented as cost (€) and quality-adjusted life years (QALYs) per 1000 patients. RESULTS: All three scenarios of the NILS model reduced total costs (-€93,244 to -€398,941 per 1000 patients). The overall health benefit allowing for the impact of SLNB complications was a net health gain (7.0-26.9 QALYs per 1000 patients). Sensitivity analyses disregarding reduced quality of life from lymphedema showed a small loss in total health benefits (0.4-4.0 QALYs per 1000 patients) because of the reduction in total life years (0.6-6.5 life years per 1000 patients) after reduced adjuvant treatment. Subgroup analyses showed greater cost reductions and QALY gains in patients undergoing BCS. CONCLUSION: Implementing the NILS model to identify patients with low risk for nodal metastases was associated with substantial cost reductions and likely overall health gains, especially in patients undergoing BCS.
目的:目前对临床淋巴结阴性(cN0)患者进行前哨淋巴结活检(SLNB)的必要性存在争议。我们的目的是研究一种术前非侵入性淋巴结分期(NILS)模型(一种人工神经网络模型)预测 cN0 乳腺癌(BC)患者病理淋巴结状态的成本效益。
方法:开发了一种健康经济学决策分析模型,以评估 NILS 模型在减少低预测风险的 cN0 患者接受 SLNB 的比例方面的效用。该模型使用了国家登记处和已发表研究的信息,并评估了 NILS 模型的三种灵敏度/特异性情况。亚组分析探讨了保乳手术(BCS)或乳房切除术的结果。结果以每 1000 例患者的成本(€)和质量调整生命年(QALY)表示。
结果:NILS 模型的所有三种情况都降低了总费用(每 1000 例患者减少 93244 欧元至 398941 欧元)。考虑到 SLNB 并发症的影响,整体健康效益是净健康收益(每 1000 例患者增加 7.0-26.9 QALY)。不考虑淋巴水肿导致生活质量降低的敏感性分析显示,由于辅助治疗减少导致总寿命(每 1000 例患者减少 0.6-6.5 年)减少,总健康效益略有损失(每 1000 例患者减少 0.4-4.0 QALY)。亚组分析显示,在接受 BCS 的患者中,成本降低和 QALY 增加幅度更大。
结论:实施 NILS 模型以识别低淋巴结转移风险的患者与显著的成本降低和可能的整体健康收益相关,特别是在接受 BCS 的患者中。
Eur J Surg Oncol. 2019-5-16
Anticancer Res. 2018-6
Breast Cancer Res Treat. 2021-8
Asian Pac J Cancer Prev. 2018-12-25
Breast Cancer Res Treat. 2018-5-30