Liu Junyi, Zhang Jingxing, Liu Jie, Lin Zhenrui, Li Zhenhua, Lin Zhongzheng, Zhang Junwei, Huang Cong, Mo Shuqi, Shen Lei, Lin Shuqing, Chen Yujie, Gao Ran, Zhang Lei, Lan Xiaobo, Cai Xinlun, Li Zhaohui, Yu Siyuan
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
Yangtze Optical Fibre and Cable Joint Stock Limited Company, State Key Laboratory of Optical Fibre and Cable Manufacture Technology, No.9 Guanggu Avenue, Wuhan, Hubei, China.
Light Sci Appl. 2022 Jul 5;11(1):202. doi: 10.1038/s41377-022-00889-3.
Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s (Pbps) and a spectral efficiency of 156.8 (130.7) bit s Hz. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.
空分复用(SDM)作为未来超高容量光纤通信的主要候选技术,需要解决其可扩展性方面的限制,这种限制是由消除复用空间信道之间光耦合所导致的串扰所需的计算密集型多输入多输出(MIMO)数字信号处理(DSP)造成的。通过利用环形芯光纤(RCF)中轨道角动量(OAM)模式的独特传播特性,在一个34公里长的7芯RCF中展示了一种将SDM与C+L波段密集波分复用(DWDM)相结合的系统,该系统能够传输总共24960个信道,原始(净)容量为1.223(1.02)拍比特每秒(Pbps),频谱效率为156.8(130.7)比特每秒赫兹。对于如此高的信道数量而言,该系统仅使用固定大小的4×4 MIMO DSP模块,且时域抽头不超过25个。这种超低的MIMO复杂度是由光纤芯之间以及每个芯内具有固定数量4个模式的非简并OAM模式组之间的同时弱耦合实现的。这些结果首次使基于OAM的光纤通信链路的容量超过了1 Pbps的里程碑。它们同时也代表了在已报道的容量大于1 Pbps的少模多芯光纤(FM-MCF)SDM系统中,最低的MIMO复杂度以及第二小的光纤包层直径。我们相信这些结果代表了SDM传输向前迈出的重要一步,因为它们体现了在保持MIMO处理处于超低复杂度水平并以模块化可扩展方式进一步扩大每根光纤容量的巨大潜力。