Suppr超能文献

负载于具有高活性Ni-N位点的分级多孔碳化木材上的镍单原子,作为用于高效CO电还原的自支撑电极。

Ni single atoms supported on hierarchically porous carbonized wood with highly active Ni-N sites as a self-supported electrode for superior CO electroreduction.

作者信息

Chang Huaiyu, Pan Hui, Wang Fang, Zhang Zhengguo, Kang Yaming, Min Shixiong

机构信息

School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.

School of Electrical and Mechanical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.

出版信息

Nanoscale. 2022 Jul 21;14(28):10003-10008. doi: 10.1039/d2nr01992b.

Abstract

Powdery N-doped carbon-supported single-atom catalysts (SACs) can be prepared on a large scale and are highly selective in converting CO to CO, but their practical application is restricted by their powdery texture. Herein, we report Ni single atoms supported on hierarchically porous N-doped carbonized wood (Ni SAs-NCW) as a self-supported electrode for efficient and durable CO electroreduction. The porous NCW matrix possesses an abundance of open aligned microchannels that allow unimpeded CO diffusion and electrolyte transportation while the uniformly dispersed Ni SAs in the NCW matrix in the Ni-N configuration afford ample highly active sites for CO electroreduction. This Ni SAs-NCW electrode exhibits a high CO-to-CO faradaic efficiency (FE) of 92.1% and a CO partial current density () of 11.4 mA cm at -0.46 V the reversible hydrogen electrode (RHE) and maintains a stable FE and over a period of 9 h of electrolysis. This work provides an effective strategy to develop efficient SACs with potential to be integrated into flow cell systems for large-scale CO reduction.

摘要

粉末状氮掺杂碳负载单原子催化剂(SACs)可以大规模制备,并且在将CO转化为CO方面具有高度选择性,但其实际应用受到其粉末质地的限制。在此,我们报道了负载在分级多孔氮掺杂碳化木材上的镍单原子(Ni SAs-NCW)作为一种用于高效且耐用的CO电还原的自支撑电极。多孔的NCW基质拥有大量开放排列的微通道,可实现CO的无阻碍扩散和电解质传输,而在NCW基质中以Ni-N构型均匀分散的Ni SAs为CO电还原提供了充足的高活性位点。这种Ni SAs-NCW电极在相对于可逆氢电极(RHE)为-0.46 V时,表现出92.1%的高CO到CO法拉第效率(FE)和11.4 mA cm的CO分电流密度(),并且在9小时的电解过程中保持稳定的FE和。这项工作提供了一种有效的策略来开发高效的SACs,有潜力集成到流动电池系统中以进行大规模的CO还原。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验