Suppr超能文献

豌豆荚仿生羟基磷灰石纳米线增强聚乳酸复合材料具有类似骨骼的强度。

Pea pod-mimicking hydroxyapatite nanowhisker-reinforced poly(lactic acid) composites with bone-like strength.

机构信息

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.

School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China.

出版信息

Int J Biol Macromol. 2022 Sep 1;216:114-123. doi: 10.1016/j.ijbiomac.2022.06.211. Epub 2022 Jul 4.

Abstract

The anisotropic hierarchical structures of naturally derived materials have offered useful design principles for the fabrication of high-strength and functional materials. Herein, we unraveled a structure-by-bionics approach to construction of pea pod-mimicking architecture for poly(lactic acid) (PLA) composites impregnated with hydroxyapatite nanowhiskers (HANWs). The HANWs (length of 80-120 nm, diameter of ~30 nm) were customized using microwave-assisted aqueous biomineralization at minute level, which were incorporated into PLA microfibers by electrospinning with filler loadings of 10-30 wt%. The membranes comprising HANW-modified PLA microfibers were stacked and structured into composite films, strategically involving high-pressure compression at a relatively low temperature to impart the confined structuring mechanisms. It thus allowed partial melting and thinning of PLA microfibers into nanofibers, onto which the discrete HANWs were tightly adhered and embedded, showing distinguished architectural configurations identical with pea pod. More importantly, the mechanical properties and bioactivity were remarkably promoted, as demonstrated by the increments of over 54 % and nearly 72 % for the yield strength and elastic modulus (71.6 and 2547 MPa) of the structured composite loaded 30 wt% HANWs compared to those of pure PLA (46.4 and 1484 MPa), as accompanied by significant improvements in the bioactivity to nucleate and create apatite entities in mineral solution. The unusual combination of excellent biological characteristics and bone-like mechanical elasticity and extensibility make the structured PLA composites promising for guided bone/tissue regeneration therapy.

摘要

天然衍生材料的各向异性分层结构为高强度和功能材料的制造提供了有用的设计原则。在此,我们通过结构仿生的方法,构建了豌豆荚仿生结构,用于聚乳酸(PLA)复合材料的浸渍,其中填充了羟基磷灰石纳米线(HANWs)。HANWs(长度 80-120nm,直径约 30nm)通过微波辅助的水相生物矿化在微小水平上定制,然后通过静电纺丝将其掺入 PLA 微纤维中,填充负载为 10-30wt%。包含 HANW 改性 PLA 微纤维的膜被堆叠并结构化成为复合膜,通过在相对较低的温度下进行高压压缩,采用限制结构机制。这使得 PLA 微纤维部分熔融和细化成纳米纤维,离散的 HANWs 紧密附着和嵌入在纳米纤维上,呈现出与豌豆荚相同的独特结构配置。更重要的是,机械性能和生物活性得到了显著提高,与纯 PLA(46.4 和 1484MPa)相比,结构复合材料在 30wt%HANW 负载下的屈服强度和弹性模量(71.6 和 2547MPa)分别增加了 54%和近 72%,同时在矿化溶液中诱导和形成磷灰石实体的生物活性也得到了显著提高。优异的生物学特性、骨样机械弹性和可拉伸性的独特结合,使结构化 PLA 复合材料有望用于引导骨/组织再生治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验