Suppr超能文献

为长新冠预测风险的模型推导和验证:利用苏格兰关联数据的观察性队列研究方案。

Deriving and validating a risk prediction model for long COVID-19: protocol for an observational cohort study using linked Scottish data.

机构信息

Usher Institute, The University of Edinburgh, Edinburgh, UK

Usher Institute, The University of Edinburgh, Edinburgh, UK.

出版信息

BMJ Open. 2022 Jul 6;12(7):e059385. doi: 10.1136/bmjopen-2021-059385.

Abstract

INTRODUCTION

COVID-19 is commonly experienced as an acute illness, yet some people continue to have symptoms that persist for weeks, or months (commonly referred to as 'long-COVID'). It remains unclear which patients are at highest risk of developing long-COVID. In this protocol, we describe plans to develop a prediction model to identify individuals at risk of developing long-COVID.

METHODS AND ANALYSIS

We will use the national Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) platform, a population-level linked dataset of routine electronic healthcare data from 5.4 million individuals in Scotland. We will identify potential indicators for long-COVID by identifying patterns in primary care data linked to information from out-of-hours general practitioner encounters, accident and emergency visits, hospital admissions, outpatient visits, medication prescribing/dispensing and mortality. We will investigate the potential indicators of long-COVID by performing a matched analysis between those with a positive reverse transcriptase PCR (RT-PCR) test for SARS-CoV-2 infection and two control groups: (1) individuals with at least one negative RT-PCR test and never tested positive; (2) the general population (everyone who did not test positive) of Scotland. Cluster analysis will then be used to determine the final definition of the outcome measure for long-COVID. We will then derive, internally and externally validate a prediction model to identify the epidemiological risk factors associated with long-COVID.

ETHICS AND DISSEMINATION

The EAVE II study has obtained approvals from the Research Ethics Committee (reference: 12/SS/0201), and the Public Benefit and Privacy Panel for Health and Social Care (reference: 1920-0279). Study findings will be published in peer-reviewed journals and presented at conferences. Understanding the predictors for long-COVID and identifying the patient groups at greatest risk of persisting symptoms will inform future treatments and preventative strategies for long-COVID.

摘要

简介

COVID-19 通常被视为急性疾病,但有些人仍持续出现数周至数月的症状(通常称为“长新冠”)。目前仍不清楚哪些患者有发生长新冠的最高风险。本方案中,我们描述了制定预测模型以识别发生长新冠风险个体的计划。

方法与分析

我们将使用全国性的早期大流行评估和增强型 COVID-19 监测(EAVE II)平台,这是一个来自苏格兰 540 万人的常规电子医疗保健数据的人群水平链接数据集。我们将通过识别与家庭医生就诊、急诊就诊、住院、门诊就诊、药物开方/配药和死亡率相关的初级保健数据中的模式,来识别长新冠的潜在指标。我们将通过对 SARS-CoV-2 感染的逆转录酶聚合酶链反应(RT-PCR)检测呈阳性者与两个对照组(1)至少有一次 RT-PCR 检测呈阴性且从未检测呈阳性者;(2)苏格兰的一般人群(所有未检测呈阳性者)之间进行匹配分析,来调查长新冠的潜在指标。聚类分析将用于确定长新冠结局指标的最终定义。然后,我们将内部和外部验证预测模型,以确定与长新冠相关的流行病学危险因素。

伦理与传播

EAVE II 研究已获得研究伦理委员会(编号:12/SS/0201)和健康与社会保健公益和隐私小组(编号:1920-0279)的批准。研究结果将发表在同行评议的期刊上,并在会议上展示。了解长新冠的预测因素并确定持续症状风险最大的患者群体,将为长新冠的未来治疗和预防策略提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/718b/9260199/f144f28e38c5/bmjopen-2021-059385f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验