Suppr超能文献

基于聚类表达数据的变化点检测。

Change point detection for clustered expression data.

机构信息

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, Berlin, 10117, Germany.

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neonatology, Charitéplatz 1, Berlin, 10117, Germany.

出版信息

BMC Genomics. 2022 Jul 6;23(1):491. doi: 10.1186/s12864-022-08680-9.

Abstract

BACKGROUND

To detect changes in biological processes, samples are often studied at several time points. We examined expression data measured at different developmental stages, or more broadly, historical data. Hence, the main assumption of our proposed methodology was the independence between the examined samples over time. In addition, however, the examinations were clustered at each time point by measuring littermates from relatively few mother mice at each developmental stage. As each examination was lethal, we had an independent data structure over the entire history, but a dependent data structure at a particular time point. Over the course of these historical data, we wanted to identify abrupt changes in the parameter of interest - change points.

RESULTS

In this study, we demonstrated the application of generalized hypothesis testing using a linear mixed effects model as a possible method to detect change points. The coefficients from the linear mixed model were used in multiple contrast tests and the effect estimates were visualized with their respective simultaneous confidence intervals. The latter were used to determine the change point(s). In small simulation studies, we modelled different courses with abrupt changes and compared the influence of different contrast matrices. We found two contrasts, both capable of answering different research questions in change point detection: The Sequen contrast to detect individual change points and the McDermott contrast to find change points due to overall progression. We provide the R code for direct use with provided examples. The applicability of those tests for real experimental data was shown with in-vivo data from a preclinical study.

CONCLUSION

Simultaneous confidence intervals estimated by multiple contrast tests using the model fit from a linear mixed model were capable to determine change points in clustered expression data. The confidence intervals directly delivered interpretable effect estimates representing the strength of the potential change point. Hence, scientists can define biologically relevant threshold of effect strength depending on their research question. We found two rarely used contrasts best fitted for detection of a possible change point: the Sequen and McDermott contrasts.

摘要

背景

为了检测生物过程的变化,通常会在多个时间点研究样本。我们研究了在不同发育阶段测量的表达数据,或者更广泛地说,历史数据。因此,我们提出的方法的主要假设是随时间推移,被检查的样本之间是独立的。然而,此外,在每个时间点通过测量每个发育阶段来自相对较少母鼠的同窝仔鼠进行聚类检查。由于每次检查都是致命的,因此我们在整个历史记录中具有独立的数据结构,但在特定时间点具有依赖的数据结构。在这些历史数据中,我们希望确定感兴趣参数的突然变化-变化点。

结果

在这项研究中,我们展示了使用广义假设检验的应用,使用线性混合效应模型作为检测变化点的可能方法。线性混合模型的系数用于多次对比检验,效应估计值通过各自的同时置信区间进行可视化。后者用于确定变化点。在小型模拟研究中,我们用突然变化的不同课程建模,并比较了不同对比矩阵的影响。我们发现了两个对比,都能够回答变化点检测中的不同研究问题:用于检测个体变化点的Sequen 对比和用于检测整体进展引起的变化点的 McDermott 对比。我们提供了直接使用提供的示例的 R 代码。通过对来自临床前研究的体内数据的实际实验数据的应用,展示了这些测试的适用性。

结论

使用线性混合模型拟合的模型进行多次对比检验的同时置信区间能够确定聚类表达数据中的变化点。置信区间直接提供了可解释的效应估计值,代表潜在变化点的强度。因此,科学家可以根据他们的研究问题定义生物学上相关的效应强度阈值。我们发现两个很少使用的对比最适合检测可能的变化点:Sequen 和 McDermott 对比。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/540d/9261071/8ce3213924ef/12864_2022_8680_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验