Department of Educational Sciences, University of Potsdam, Potsdam, Germany.
Department of Psychology, University of Trier, Trier, Germany.
Res Synth Methods. 2023 Jan;14(1):5-35. doi: 10.1002/jrsm.1584. Epub 2022 Jul 21.
Descriptive analyses of socially important or theoretically interesting phenomena and trends are a vital component of research in the behavioral, social, economic, and health sciences. Such analyses yield reliable results when using representative individual participant data (IPD) from studies with complex survey designs, including educational large-scale assessments (ELSAs) or social, health, and economic survey and panel studies. The meta-analytic integration of these results offers unique and novel research opportunities to provide strong empirical evidence of the consistency and generalizability of important phenomena and trends. Using ELSAs as an example, this tutorial offers methodological guidance on how to use the two-stage approach to IPD meta-analysis to account for the statistical challenges of complex survey designs (e.g., sampling weights, clustered and missing IPD), first, to conduct descriptive analyses (Stage 1), and second, to integrate results with three-level meta-analytic and meta-regression models to take into account dependencies among effect sizes (Stage 2). The two-stage approach is illustrated with IPD on reading achievement from the Programme for International Student Assessment (PISA). We demonstrate how to analyze and integrate standardized mean differences (e.g., gender differences), correlations (e.g., with students' socioeconomic status [SES]), and interactions between individual characteristics at the participant level (e.g., the interaction between gender and SES) across several PISA cycles. All the datafiles and R scripts we used are available online. Because complex social, health, or economic survey and panel studies share many methodological features with ELSAs, the guidance offered in this tutorial is also helpful for synthesizing research evidence from these studies.
描述性分析社会重要或理论有趣的现象和趋势是行为、社会、经济和健康科学研究的重要组成部分。当使用具有复杂调查设计的研究的代表性个体参与者数据 (IPD) 时,例如教育大规模评估 (ELSAs) 或社会、健康和经济调查和面板研究,这些分析会产生可靠的结果。这些结果的元分析整合为提供重要现象和趋势一致性和可推广性的有力经验证据提供了独特和新颖的研究机会。以 ELSAs 为例,本教程提供了使用 IPD 元分析两阶段方法的方法学指导,以解决复杂调查设计的统计挑战(例如,抽样权重、聚类和缺失 IPD),首先进行描述性分析(第 1 阶段),其次将结果与三级元分析和元回归模型集成,以考虑效应大小之间的依存关系(第 2 阶段)。两阶段方法通过来自国际学生评估计划 (PISA) 的阅读成绩的 IPD 进行说明。我们展示了如何分析和整合标准化平均差异(例如,性别差异)、相关性(例如,与学生的社会经济地位 [SES] 的相关性)以及参与者水平上个体特征之间的相互作用(例如,性别和 SES 之间的相互作用)跨越多个 PISA 周期。我们使用的所有数据文件和 R 脚本都可以在线获得。由于复杂的社会、健康或经济调查和面板研究与 ELSAs 具有许多共同的方法特征,因此本教程中提供的指导对于综合这些研究的研究证据也很有帮助。