Yalçin Nadir, Flint Robert B, van Schaik Ron H N, Simons Sinno H P, Allegaert Karel
Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands.
Pharmgenomics Pers Med. 2022 Jun 30;15:675-696. doi: 10.2147/PGPM.S350205. eCollection 2022.
In neonates, pharmacogenetics has an additional layer of complexity. This is because in addition to genetic variability in genes that code for proteins relevant to clinical pharmacology, there are rapidly maturational changes in these proteins. Consequently, pharmacotherapy in neonates has unique challenges. To provide a contemporary overview on pharmacogenetics in neonates, we conducted a systematic review to identify, describe and quantify the impact of pharmacogenetics on pharmacokinetics and -dynamics in neonates and infants (PROSPERO, CRD42022302029). The search was performed in Medline, Embase, Web of Science and Cochrane, and was extended by a PubMed search on the 'top 100 Medicines' (medicine + newborn/infant + pharmacogen*) prescribed to neonates. Following study selection (including data in infants, PGx related) and quality assessment (Newcastle-Ottawa scale, Joanna Briggs Institute tool), 55/789 records were retained. Retained records relate to metabolizing enzymes involved in phase I [cytochrome P450 (CYP1A2, CYP2A6, CYP2B6, CYP2C8/C9/C18, CYP2C19, CYP2D6, CYP3A5, CYP2E1)], phase II [glutathione-S-transferases, N-acetyl transferases, UDP-glucuronosyl-transferase], transporters [ATP-binding cassette transporters, organic cation transporters], or receptor/post-receptor mechanisms [opioid related receptor and post-receptor mechanisms, tumor necrosis factor, mitogen-activated protein kinase 8, vitamin binding protein diplotypes, corticotrophin-releasing hormone receptor-1, nuclear receptor subfamily-1, vitamin K epoxide reductase complex-1, and angiotensin converting enzyme variants]. Based on the available overview, we conclude that the majority of reported pharmacogenetic studies explore and extrapolate observations already described in older populations. Researchers commonly try to quantify the impact of these polymorphisms in small datasets of neonates or infants. In a next step, pharmacogenetic studies in neonatal life should go beyond confirmation of these associations and explore the impact of pharmacogenetics as a covariate limited to maturation of neonatal life (ie, fetal malformations, breastfeeding or clinical syndromes). The challenge is to identify the specific factors, genetic and non-genetic, that contribute to the best benefit/risk balance.
在新生儿中,药物遗传学具有额外的复杂性。这是因为除了编码与临床药理学相关蛋白质的基因存在遗传变异性外,这些蛋白质还存在快速的成熟变化。因此,新生儿的药物治疗面临独特的挑战。为了对新生儿的药物遗传学进行当代概述,我们进行了一项系统综述,以识别、描述和量化药物遗传学对新生儿和婴儿药代动力学和药效动力学的影响(PROSPERO,CRD42022302029)。检索在Medline、Embase、Web of Science和Cochrane中进行,并通过对新生儿使用的“前100种药物”(药物+新生儿/婴儿+药物遗传学*)进行PubMed检索进行扩展。经过研究选择(包括婴儿数据、与药物基因组学相关)和质量评估(纽卡斯尔-渥太华量表、乔安娜·布里格斯研究所工具),保留了55/789条记录。保留的记录涉及参与I期的代谢酶[细胞色素P450(CYP1A2、CYP2A6、CYP2B6、CYP2C8/C9/C18、CYP2C19、CYP2D6、CYP3A5、CYP2E1)]、II期[谷胱甘肽-S-转移酶、N-乙酰转移酶、UDP-葡萄糖醛酸基转移酶]、转运体[ATP结合盒转运体、有机阳离子转运体]或受体/受体后机制[阿片类相关受体和受体后机制、肿瘤坏死因子、丝裂原活化蛋白激酶8、维生素结合蛋白双倍型、促肾上腺皮质激素释放激素受体-1、核受体亚家族-1、维生素K环氧化物还原酶复合物-1和血管紧张素转换酶变体]。基于现有的概述,我们得出结论,大多数已报道的药物遗传学研究探索并推断了在老年人群中已经描述的观察结果。研究人员通常试图在新生儿或婴儿的小数据集中量化这些多态性的影响。下一步,新生儿期的药物遗传学研究应超越对这些关联的确认,并探索药物遗传学作为一个仅限于新生儿期成熟的协变量的影响(即胎儿畸形、母乳喂养或临床综合征)。挑战在于确定有助于实现最佳效益/风险平衡的具体遗传和非遗传因素。