Chen Fan, Yang Fan, Sheng Can, Li JiaZhou, Xu Han, Qing Yan, Chen Sha, Wu Yiqiang, Lu Xihong
Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Central South University of Forestry and Technology, Changsha 410004, PR China.
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
J Colloid Interface Sci. 2022 Nov 15;626:445-452. doi: 10.1016/j.jcis.2022.06.173. Epub 2022 Jul 3.
Replacement of the sluggish anodic reaction in water electrocatalysis by a thermodynamically favorable urea oxidation reaction (UOR) offers the prospect of energy-saving H generation, additionally mitigating urea-rich wastewater pollution, whereas the lack of highly efficient and earth-abundant UOR catalysts severely restricts widespread use of this catalytic system. Herein, Mn-doped nickel hydroxide porous nanowire arrays (denoted Mn-Ni(OH) PNAs) are rationally developed and evaluated as efficient catalysts for the UOR in an alkaline solution via the in situ electrochemical conversion of NiMn-based metal-organic frameworks. Mn doping can modulate the electronic structural configuration of Ni(OH) to significantly increase the electron density and optimize the energy barriers of the CO*/NH* intermediates of the UOR. Meanwhile, porous nanowire arrays will afford abundant spaces/channels to facilitate active site exposure and electron/mass transfer. As a result, the Mn-Ni(OH) PNAs delivered superior UOR performance with a small potential of 1.37 V vs. RHE at 50 mA cm, a Tafel slope of 31 mV dec, and robust stability. Notably, the overall urea electrolysis system coupled with a commercial Pt/C cathode demonstrated excellent activity (1.40 V at 20 mA cm) and durability operation (only 1.40% decay after 48 h).
通过热力学有利的尿素氧化反应(UOR)取代水电催化中缓慢的阳极反应,为节能制氢提供了前景,同时还能减轻富尿素废水污染,然而缺乏高效且储量丰富的UOR催化剂严重限制了该催化体系的广泛应用。在此,通过镍锰基金属有机框架的原位电化学转化,合理开发并评估了锰掺杂氢氧化镍多孔纳米线阵列(表示为Mn-Ni(OH) PNAs)作为碱性溶液中UOR的高效催化剂。锰掺杂可以调节Ni(OH)的电子结构构型,显著增加电子密度并优化UOR的CO*/NH*中间体的能垒。同时,多孔纳米线阵列将提供丰富的空间/通道,以促进活性位点暴露以及电子/质量传递。结果,Mn-Ni(OH) PNAs在50 mA cm时相对于可逆氢电极(RHE)具有1.37 V的小电位、31 mV dec的塔菲尔斜率以及强大的稳定性,展现出优异的UOR性能。值得注意的是,与商业Pt/C阴极耦合的整体尿素电解系统表现出优异的活性(在20 mA cm时为1.40 V)和耐用性操作(48小时后仅衰减1.40%)。