Chen Lei, Wang Lei, Ren Jin-Tao, Wang Hao-Yu, Tian Wen-Wen, Sun Ming-Lei, Yuan Zhong-Yong
School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.
Small Methods. 2024 Dec;8(12):e2400108. doi: 10.1002/smtd.202400108. Epub 2024 Apr 1.
In contrast to the thermodynamically unfavorable anodic oxygen evolution reaction, the electrocatalytic urea oxidation reaction (UOR) presents a more favorable thermodynamic potential. However, the practical application of UOR has been hindered by sluggish kinetics. In this study, hierarchical porous nanosheet arrays featuring abundant Ni-WO heterointerfaces on nickel foam (Ni-WO/NF) is introduced as a monolith electrode, demonstrating exceptional activity and stability toward UOR. The Ni-WO/NF catalyst exhibits unprecedentedly rapid UOR kinetics (200 mA cm at 1.384 V vs. RHE) and a high turnover frequency (0.456 s), surpassing most previously reported Ni-based catalysts, with negligible activity decay observed during a durability test lasting 150 h. Ex situ X-ray photoelectron spectroscopy and density functional theory calculations elucidate that the WO interface significantly modulates the local charge distribution of Ni species, facilitating the generation of Ni with optimal affinity for interacting with urea molecules and CO intermediates at heterointerfaces during UOR. This mechanism accelerates the interfacial electrocatalytic kinetics. Additionally, in situ Fourier transform infrared spectroscopy provides deep insights into the substantial contribution of interfacial Ni-WO sites to UOR electrocatalysis, unraveling the underlying molecular-level mechanisms. Finally, the study explores the application of a direct urea fuel cell to inspire future practical implementations.
与热力学上不利的阳极析氧反应相比,电催化尿素氧化反应(UOR)具有更有利的热力学电位。然而,UOR的实际应用受到缓慢动力学的阻碍。在本研究中,引入了在泡沫镍(Ni-WO/NF)上具有丰富Ni-WO异质界面的分级多孔纳米片阵列作为整体电极,展示了对UOR的优异活性和稳定性。Ni-WO/NF催化剂表现出前所未有的快速UOR动力学(在1.384 V vs. RHE下为200 mA cm)和高周转频率(0.456 s),超过了大多数先前报道的镍基催化剂,在持续150小时的耐久性测试中观察到的活性衰减可忽略不计。非原位X射线光电子能谱和密度泛函理论计算表明,WO界面显著调节了Ni物种的局部电荷分布,促进了在UOR过程中与异质界面处尿素分子和CO中间体相互作用具有最佳亲和力的Ni的生成。这种机制加速了界面电催化动力学。此外,原位傅里叶变换红外光谱深入了解了界面Ni-WO位点对UOR电催化的重大贡献,揭示了潜在的分子水平机制。最后,该研究探索了直接尿素燃料电池的应用,以启发未来的实际应用。