Suppr超能文献

体感皮层而不是运动皮层的 µ-节律相位与 EEG 触发 TMS 中的皮质脊髓兴奋性相关。

µ-rhythm phase from somatosensory but not motor cortex correlates with corticospinal excitability in EEG-triggered TMS.

机构信息

Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, Canada.

Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.

出版信息

J Neurosci Methods. 2022 Sep 1;379:109662. doi: 10.1016/j.jneumeth.2022.109662. Epub 2022 Jul 6.

Abstract

BACKGROUND

Sensorimotor µ-rhythm phase is correlated with corticospinal excitability. Transcranial magnetic stimulation (TMS) of motor cortex results in larger motor evoked potentials (MEPs) during the negative peak of the EEG oscillation as extracted with a surface Laplacian. However, the anatomical source of the relevant oscillation is not clear and demonstration of the relationship is sensitive to the choice of EEG montage.

OBJECTIVE/HYPOTHESIS: Here, we compared two EEG montages preferentially sensitive to oscillations originating from the crown of precentral gyrus (dorsal premotor cortex) vs. postcentral gyrus (secondary somatosensory cortex). We hypothesized that the EEG signal from precentral gyrus would correlate more strongly with MEP amplitude, given that the corticospinal neurons are located in the anterior wall of the sulcus and the corticospinal tract has input from premotor cortex.

NEW METHOD

Real-time EEG-triggered TMS of motor cortex was applied in 6 different conditions in randomly interleaved order, 3 phase conditions (positive peak, negative peak, random phase of the ongoing µ-oscillation), and each phase condition for 2 different EEG montages corresponding to oscillations preferentially originating in precentral gyrus (premotor cortex) vs. postcentral gyrus (somatosensory cortex), extracted using FCC3h vs. C3 centered EEG montages.

RESULTS

The negative vs. positive peak of sensorimotor µ-rhythm as extracted from the C3 montage (postcentral gyrus, somatosensory cortex) correlated with states of high vs. low corticospinal excitability (p < 0.001), replicating previous findings. However, no significant correlation was found for sensorimotor µ-rhythm as extracted from the neighboring FCC3 montage (precentral gyrus, premotor cortex). This implies that EEG-signals from the somatosensory cortex are better predictors of corticospinal excitability than EEG-signals from the motor areas.

CONCLUSIONS

The extraction of a brain oscillation whose phase corresponds to corticospinal excitability is highly sensitive to the selected EEG montage and the location of the EEG sensors on the scalp. Here, the cortical source of EEG oscillations predicting response amplitude does not correspond to the cortical target of the stimulation, indicating that even in this simple case, a specific neuronal pathway from somatosensory cortex to primary motor cortex is involved.

摘要

背景

感觉运动µ节律的相位与皮质脊髓兴奋性相关。经颅磁刺激(TMS)作用于运动皮层,在脑电图(EEG)振荡的负峰时,会产生更大的运动诱发电位(MEP),因为这是通过表面拉普拉斯提取的。然而,相关振荡的解剖学来源尚不清楚,并且对该关系的证明对 EEG 导联的选择敏感。

目的/假设:在这里,我们比较了两种 EEG 导联,它们对源自中央前回(背侧运动前皮质)和中央后回(次级体感皮质)的振荡更敏感。我们假设,鉴于皮质脊髓神经元位于脑沟的前壁,并且皮质脊髓束从前运动皮质获得输入,因此来自中央前回的 EEG 信号与 MEP 幅度的相关性更强。

新方法

在随机交错的 6 种不同条件下,以实时 EEG 触发 TMS 作用于运动皮层,3 种相位条件(正峰、负峰、正在进行的µ-振荡的随机相位),每种相位条件对应 2 种不同的 EEG 导联,分别对应于优先源自中央前回(运动前皮质)和中央后回(体感皮质)的振荡,使用 FCC3h 和 C3 中心 EEG 导联提取。

结果

从前中央回(运动前皮质)提取的 C3 导联(中央后回,体感皮质)的感觉运动µ节律的负峰与正峰与高与低皮质脊髓兴奋性的状态相关(p<0.001),重现了先前的发现。然而,从前中央回(运动前皮质)提取的相邻 FCC3 导联的感觉运动µ节律没有发现显著相关性。这意味着体感皮质的 EEG 信号比运动区的 EEG 信号更能预测皮质脊髓兴奋性。

结论

提取与皮质脊髓兴奋性相对应的脑振荡相位高度依赖于所选的 EEG 导联和头皮上 EEG 传感器的位置。在这里,预测反应幅度的 EEG 振荡的皮质源与刺激的皮质目标不对应,这表明即使在这种简单的情况下,也涉及从体感皮质到初级运动皮质的特定神经元通路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验