Cravo Pedro
Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, n° 100, 1349-008 Lisboa, Portugal.
Parasitol Int. 2022 Dec;91:102623. doi: 10.1016/j.parint.2022.102623. Epub 2022 Jul 5.
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub-Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance.
疟疾是一种极具破坏力的疾病,每年仍有超过50万人丧生,其中大部分在撒哈拉以南非洲地区。疟疾控制的主要障碍之一是耐药突变寄生虫的进化和传播。了解导致耐药性的基因和相应突变有助于设计具有新型作用模式的药物,并能够实时预测和监测自然寄生虫种群中的耐药性。识别这些突变的最佳方法是通过实验使寄生虫对相关药物产生耐药性,然后将耐药突变体的基因组与敏感祖代寄生虫的基因组进行比较。多年来,这个简单的进化概念一直是一种范例发展的起点,该范例基于使用啮齿动物疟原虫查巴迪疟原虫来揭示疟疾耐药性的遗传学。它涉及使用一种克隆的寄生虫分离株(查巴迪疟原虫AS),其基因组已得到充分表征,通过在逐渐增加的药物压力下在小鼠体内连续传代来人工选择对特定药物的耐药性。最终得到的寄生虫进行克隆,然后通过连锁群选择(由理查德·卡特教授及其团队构思的一种技术)和/或全基因组测序发现基因突变。然后可以通过等位基因置换实验和/或自然寄生虫种群中的基因型-表型关联研究来探究这些突变在人类疟原虫中的精确作用。使用这种范例,确定了对最重要的抗疟药物耐药的所有潜在突变,其中大多数是开创性的,后来还被证明在人类疟原虫的自然感染中的耐药性中也起作用。这支持将查巴迪疟原虫用作快速预测模型,以识别对现有和未来抗疟药物耐药的候选遗传标记,并增进我们对耐药生物学的理解。