Suppr超能文献

线粒体呼吸适应的机制。

Mechanisms of mitochondrial respiratory adaptation.

机构信息

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Nat Rev Mol Cell Biol. 2022 Dec;23(12):817-835. doi: 10.1038/s41580-022-00506-6. Epub 2022 Jul 8.

Abstract

Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.

摘要

线粒体能量适应包括多种保守过程,通过调整线粒体的呼吸能力来维持细胞和机体在不断变化的环境中的适应性和生存能力。这些线粒体反应受调节生物学的一般原则所支配,例如基因表达、蛋白质翻译、蛋白质复合物形成、跨膜运输、酶活性和代谢物水平的变化。这些变化可以促进线粒体生物发生和膜动态变化,从而支持线粒体呼吸。线粒体能量适应的主要调节成分包括:过氧化物酶体增殖物激活受体-γ(PPARγ)共激活因子 1α(PGC1α)和相关转录因子;mTOR 和内质网应激信号;依赖 TOM70 的线粒体蛋白输入;嵴重塑因子,包括线粒体接触点和嵴组织系统(MICOS)和 OPA1;脂质重塑;以及呼吸复合物的组装和代谢物依赖性调节。这些适应性的分子和结构机制增加了呼吸作用,以维持特定于细胞类型和组织的基本过程。未能执行这些调节反应会导致细胞损伤和炎症或衰老,从而损害细胞的生存能力和适应能量需求条件的能力。因此,线粒体适应性细胞过程对于生理反应很重要,包括对营养物质可用性、温度和体力活动的反应,其失败会导致与线粒体功能障碍相关的疾病,如代谢和年龄相关疾病和癌症。

相似文献

1
Mechanisms of mitochondrial respiratory adaptation.线粒体呼吸适应的机制。
Nat Rev Mol Cell Biol. 2022 Dec;23(12):817-835. doi: 10.1038/s41580-022-00506-6. Epub 2022 Jul 8.
3
Pathways shaping the mitochondrial inner membrane.塑造线粒体内膜的途径。
Open Biol. 2021 Dec;11(12):210238. doi: 10.1098/rsob.210238. Epub 2021 Dec 1.

引用本文的文献

本文引用的文献

2
Mosaic dysfunction of mitophagy in mitochondrial muscle disease.线粒体肌病中 mitophagy 的镶嵌功能障碍。
Cell Metab. 2022 Feb 1;34(2):197-208.e5. doi: 10.1016/j.cmet.2021.12.017. Epub 2022 Jan 13.
4
ND3 Cys39 in complex I is exposed during mitochondrial respiration.复合物 I 中的 ND3 Cys39 在线粒体呼吸过程中暴露。
Cell Chem Biol. 2022 Apr 21;29(4):636-649.e14. doi: 10.1016/j.chembiol.2021.10.010. Epub 2021 Nov 4.
5
The assembly, regulation and function of the mitochondrial respiratory chain.线粒体呼吸链的组装、调节和功能。
Nat Rev Mol Cell Biol. 2022 Feb;23(2):141-161. doi: 10.1038/s41580-021-00415-0. Epub 2021 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验