Suppr超能文献

介绍 zoid:一种用于在生态学中对具有零和一的比例数据进行建模的混合模型和 R 包。

Introducing zoid: A mixture model and R package for modeling proportional data with zeros and ones in ecology.

机构信息

School of Marine and Environmental Affairs, University of Washington, Seattle, Washington, USA.

Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic & Atmospheric Administration, Santa Cruz, California, USA.

出版信息

Ecology. 2022 Nov;103(11):e3804. doi: 10.1002/ecy.3804. Epub 2022 Aug 17.

Abstract

Many ecological data sets are proportional, representing mixtures of constituent elements such as species, populations, or strains. Analyses of proportional data are challenged by categories with zero observations (zeros), all observations (ones), and overdispersion. In lieu of ad hoc data adjustments, we describe and evaluate a zero-and-one inflated Dirichlet regression model, with its corresponding R package (zoid), capable of handling observed data consisting of three possible categories: zeros, proportions, or ones. Instead of fitting the model to observations of single biological units (e.g., individual organisms) within a sample, we sum proportional contributions across units and estimate mixture proportions using one aggregated observation per sample. Optional estimation of overdispersion and covariate influences expand model applications. We evaluate model performance, as implemented in Stan, using simulations and two ecological case studies. We show that zoid successfully estimates mixture proportions using simulated data with varying sample sizes and is robust to overdispersion and covariate structure. In empirical case studies, we estimate the composition of a mixed-stock Chinook salmon (Oncorhynchus tshawytscha) fishery and analyze the stomach contents of Atlantic cod (Gadus morhua). Our implementation of the model as an R package facilitates its application to varied ecological data sets composed of proportional observations.

摘要

许多生态数据集是比例性的,代表着物种、种群或菌株等组成元素的混合物。对比例数据的分析受到零观测(零值)、全观测(一值)和过离散的挑战。我们描述并评估了一个零一膨胀的狄利克雷回归模型,以及相应的 R 包(zoid),该模型能够处理由三个可能类别组成的观测数据:零值、比例或一值。我们不是将模型拟合到样本中单个生物单位(例如单个生物体)的观测值,而是跨单位汇总比例贡献,并使用每个样本的一个聚合观测值估计混合物比例。过离散和协变量影响的可选估计扩展了模型的应用。我们使用模拟和两个生态学案例研究来评估在 Stan 中实现的模型性能。我们表明,zoid 可以成功地使用具有不同样本大小的模拟数据估计混合物比例,并且对过离散和协变量结构具有鲁棒性。在实证案例研究中,我们估计了混合三文鱼(Oncorhynchus tshawytscha)渔业的组成,并分析了大西洋鳕鱼(Gadus morhua)的胃内容物。我们将模型作为 R 包的实现,便于将其应用于由比例观测组成的各种生态数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验