Suppr超能文献

基于配体和基于结构的方法在小分子 TLR7 拮抗剂设计中的整合。

Integration of Ligand-Based and Structure-Based Methods for the Design of Small-Molecule TLR7 Antagonists.

机构信息

Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.

Academy of Scientific and Innovative Research, Ghaziabad 201002, India.

出版信息

Molecules. 2022 Jun 23;27(13):4026. doi: 10.3390/molecules27134026.

Abstract

Toll-like receptor 7 (TLR7) is activated in response to the binding of single-stranded RNA. Its over-activation has been implicated in several autoimmune disorders, and thus, it is an established therapeutic target in such circumstances. TLR7 small-molecule antagonists are not yet available for therapeutic use. We conducted a ligand-based drug design of new TLR7 antagonists through a concerted effort encompassing 2D-QSAR, 3D-QSAR, and pharmacophore modelling of 54 reported TLR7 antagonists. The developed 2D-QSAR model depicted an excellent correlation coefficient (R: 0.86 and R: 0.78) between the experimental and estimated activities. The ligand-based drug design approach utilizing the 3D-QSAR model (R: 0.95 and R: 0.84) demonstrated a significant contribution of electrostatic potential and steric fields towards the TLR7 antagonism. This consolidated approach, along with a pharmacophore model with high correlation (R: 0.94 and R: 0.92), was used to design quinazoline-core-based hTLR7 antagonists. Subsequently, the newly designed molecules were subjected to molecular docking onto the previously proposed binding model and a molecular dynamics study for a better understanding of their binding pattern. The toxicity profiles and drug-likeness characteristics of the designed compounds were evaluated with in silico ADMET predictions. This ligand-based study contributes towards a better understanding of lead optimization and the future development of potent TLR7 antagonists.

摘要

Toll 样受体 7(TLR7)在结合单链 RNA 时被激活。其过度激活与几种自身免疫性疾病有关,因此,在这种情况下,它是一个既定的治疗靶点。TLR7 小分子拮抗剂尚未可用于治疗。我们通过包括二维定量构效关系(2D-QSAR)、三维定量构效关系(3D-QSAR)和 54 种报道的 TLR7 拮抗剂的药效团建模在内的协同努力,对新的 TLR7 拮抗剂进行了基于配体的药物设计。开发的 2D-QSAR 模型在实验和估计活性之间描绘了出色的相关系数(R:0.86 和 R:0.78)。利用 3D-QSAR 模型的基于配体的药物设计方法(R:0.95 和 R:0.84)表明静电势和立体场对 TLR7 拮抗作用有重要贡献。这种综合方法,以及具有高相关性的药效团模型(R:0.94 和 R:0.92),用于设计基于喹唑啉核心的 hTLR7 拮抗剂。随后,将新设计的分子进行分子对接到先前提出的结合模型上,并进行分子动力学研究,以更好地了解它们的结合模式。用计算机预测 ADMET 评估了设计化合物的毒性概况和药物样特性。这项基于配体的研究有助于更好地了解先导化合物优化和未来开发强效 TLR7 拮抗剂的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a88e/9268101/6a4309adbbc6/molecules-27-04026-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验