Shah Syed Asif Ali, Ahammad N Ameer, Din ElSayed M Tag El, Gamaoun Fehmi, Awan Aziz Ullah, Ali Bagh
Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
Department of Mathematics and Statistics, The University of Lahore, Lahore 54000, Pakistan.
Nanomaterials (Basel). 2022 Jun 24;12(13):2174. doi: 10.3390/nano12132174.
This study aims to determine the heat transfer properties of a magnetohydrodynamic Prandtl hybrid nanofluid over a stretched surface in the presence of bioconvection and chemical reaction effects. This article investigates the bio-convection, inclined magnetohydrodynamic, thermal linear radiations, and chemical reaction of hybrid nanofluid across stretching sheets. Also, the results are compared with the nanofluid flow. Moreover, the non-Newtonian fluid named Prandtl fluid is considered. Microfluidics, industry, transportation, the military, and medicine are just a few of the real-world applications of hybrid nanofluids. Due to the nonlinear and convoluted nature of the governing equations for the problem, similarity transformations are used to develop a simplified mathematical model with all differential equations being ordinary and asymmetric. The reduced mathematical model is computationally analyzed using the MATLAB software package's boundary value problem solver, Runge-Kutta-fourth-fifth Fehlberg's order method. When compared to previously published studies, it is observed that the acquired results exhibited a high degree of symmetry and accuracy. The velocity profiles of basic nanofluid and hybrid nanofluid are increased by increasing the Prandtl parameters' values, which is consistent with prior observations. Additionally, the concentration and temperature of simple and hybrid nanofluids increase with the magnetic parameter values.
本研究旨在确定磁流体动力学普朗特混合纳米流体在存在生物对流和化学反应效应的情况下,在拉伸表面上的传热特性。本文研究了混合纳米流体在拉伸薄板上的生物对流、倾斜磁流体动力学、热线性辐射和化学反应。此外,还将结果与纳米流体流动进行了比较。此外,考虑了名为普朗特流体的非牛顿流体。微流体、工业、运输、军事和医学只是混合纳米流体在现实世界中的一些应用。由于该问题控制方程的非线性和复杂性,采用相似变换来建立一个简化的数学模型,所有微分方程均为常微分方程且不对称。使用MATLAB软件包的边值问题求解器Runge-Kutta-四阶-五阶费尔贝格方法对简化后的数学模型进行计算分析。与先前发表的研究相比,可以观察到所获得的结果具有高度的对称性和准确性。通过增加普朗特参数的值,基础纳米流体和混合纳米流体的速度分布会增加,这与先前的观察结果一致。此外,简单纳米流体和混合纳米流体的浓度和温度随磁参数值的增加而增加。