Li Piyu, Z Duraihem Faisal, Awan Aziz Ullah, Al-Zubaidi A, Abbas Nadeem, Ahmad Daud
School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, China.
Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
Nanomaterials (Basel). 2022 Apr 4;12(7):1207. doi: 10.3390/nano12071207.
A numerical investigation of three-dimensional hybrid nanomaterial micropolar fluid flow across an exponentially stretched sheet is performed. Recognized similarity transformations are adopted to convert governing equations from PDEs into the set ODEs. The dimensionless system is settled by the operating numerical approach bvp4c. The impacts of the nanoparticle volume fraction, dimensionless viscosity ratio, stretching ratio parameter, and dimensionless constant on fluid velocity, micropolar angular velocity, fluid temperature, and skin friction coefficient in both x-direction and y-direction are inspected. Graphical outcomes are shown to predict the features of the concerned parameters into the current problem. These results are vital in the future in the branches of technology and industry. The micropolar function Rη increases for higher values of the micropolar parameter and nanoparticle concentration. Micropolar function Rη declines for higher values of the micropolar parameter and nanoparticle concentration. Temperature function is enhanced for higher values of solid nanoparticle concentration. Temperature function declines for higher values of the micropolar parameter. The range of the physical parameters are presented as: 0.005<ϕ2<0.09, Pr=6.2, 0<K<2, 0<a<2.0, ϕ1=0.1, and 0<c<1.5.
对三维混合纳米材料微极流体流过指数拉伸薄板进行了数值研究。采用公认的相似变换将控制方程从偏微分方程转换为常微分方程组。通过数值方法bvp4c求解无量纲系统。考察了纳米颗粒体积分数、无量纲粘度比、拉伸比参数和无量纲常数对流体速度、微极角速度、流体温度以及x方向和y方向的皮肤摩擦系数的影响。给出了图形结果以预测当前问题中相关参数的特征。这些结果在未来的技术和工业分支中至关重要。微极函数Rη随着微极参数和纳米颗粒浓度的增加而增加。微极函数Rη随着微极参数和纳米颗粒浓度的增加而下降。温度函数随着固体纳米颗粒浓度的增加而增强。温度函数随着微极参数的增加而下降。物理参数的范围为:0.005<ϕ2<0.09,Pr = 6.2,0<K<2,0<a<2.0,ϕ1 = 0.1,以及0<c<1.5。