Niu Yanqi, Shang Deyong, Li Zhanping
School of Mechanical, Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
Institute of Intelligent Mining & Robotics, China University of Mining and Technology (Beijing), Beijing 100083, China.
Nanomaterials (Basel). 2022 Jun 27;12(13):2202. doi: 10.3390/nano12132202.
It is vital to improve the electrochemical performance of negative materials for energy storage devices. The synergistic effect between the composites can improve the total performance. In this work, we prepare α-FeO@MnO on carbon cloth through hydrothermal strategies and subsequent electrochemical deposition. The α-FeO@MnO hybrid structure benefits electron transfer efficiency and avoids the rapid decay of capacitance caused by volume expansion. The specific capacitance of the as-obtained product is 615 mF cm at 2 mA cm. Moreover, a flexible supercapacitor presents an energy density of 0.102 mWh cm at 4.2 W cm. Bending tests of the device at different angles show excellent mechanical flexibility.
提高储能设备负极材料的电化学性能至关重要。复合材料之间的协同效应可以提高整体性能。在这项工作中,我们通过水热法和随后的电化学沉积在碳布上制备了α-FeO@MnO。α-FeO@MnO混合结构有利于电子转移效率,并避免了因体积膨胀导致的电容快速衰减。所制备产品在2 mA cm时的比电容为615 mF cm。此外,一种柔性超级电容器在4.2 W cm时的能量密度为0.102 mWh cm。该器件在不同角度下的弯曲测试显示出优异的机械柔韧性。