Suppr超能文献

通过阴离子交换策略开发用于高效水分解的花状lnMnSe新型电催化剂。

Flowery lnMnSe Novel Electrocatalyst Developed via Anion Exchange Strategy for Efficient Water Splitting.

作者信息

Manzoor Sumaira, Trukhanov Sergei V, Ansari Mohammad Numair, Abdullah Muhammad, Alruwaili Atalah, Trukhanov Alex V, Khandaker Mayeen Uddin, Idris Abubakr M, El-Nasser Karam S, Taha Taha AbdelMohaymen

机构信息

Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.

Laboratory of Magnetic Films Physics, SSPA "Scientific and Practical Materials Research Centre of NAS of Belarus", 19, P. Brovki Str., 220072 Minsk, Belarus.

出版信息

Nanomaterials (Basel). 2022 Jun 28;12(13):2209. doi: 10.3390/nano12132209.

Abstract

Oxygen and hydrogen generated by water electrolysis may be utilized as a clean chemical fuel with high gravimetric energy density and energy conversion efficiency. The hydrogen fuel will be the alternative to traditional fossil fuels in the future, which are near to exhaustion and cause pollution. In the present study, flowery-shaped InMnSe nanoelectrocatalyst is fabricated by anion exchange reaction directly grown on nickel foam (NF) in 1.0 M KOH medium for oxygen evolution reaction (OER). The physiochemical and electrical characterization techniques are used to investigate the chemical structure, morphology, and electrical properties of the InMnSe material. The electrochemical result indicates that synthesized material exhibits a smaller value of Tafel slope (86 mV/dec), lower overpotential (259 mV), and high stability for 37 h with small deterioration in the current density for a long time. Hence, the fabricated material responds with an extraordinary performance for the OER process and for many other applications in the future.

摘要

水电解产生的氧气和氢气可作为一种清洁的化学燃料,具有较高的重量能量密度和能量转换效率。氢燃料将成为未来传统化石燃料的替代品,传统化石燃料已接近枯竭并造成污染。在本研究中,通过阴离子交换反应在1.0 M KOH介质中的泡沫镍(NF)上直接生长出花状InMnSe纳米电催化剂,用于析氧反应(OER)。采用物理化学和电学表征技术研究了InMnSe材料的化学结构、形态和电学性质。电化学结果表明,合成材料的塔菲尔斜率较小(86 mV/dec),过电位较低(259 mV),并且在37小时内具有高稳定性,长时间内电流密度仅有微小下降。因此,制备的材料在OER过程以及未来的许多其他应用中表现出非凡的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16a0/9268370/aae3faa13f13/nanomaterials-12-02209-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验