Suppr超能文献

基于线性递减权重粒子群算法和入侵杂草优化算法的智能车辆动力学改进深度神经网络模型。

An Improved Deep Neural Network Model of Intelligent Vehicle Dynamics via Linear Decreasing Weight Particle Swarm and Invasive Weed Optimization Algorithms.

机构信息

College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China.

State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China.

出版信息

Sensors (Basel). 2022 Jun 21;22(13):4676. doi: 10.3390/s22134676.

Abstract

We propose an improved DNN modeling method based on two optimization algorithms, namely the linear decreasing weight particle swarm optimization (LDWPSO) algorithm and invasive weed optimization (IWO) algorithm, for predicting vehicle's longitudinal-lateral responses. The proposed improved method can restrain the solutions of weight matrices and bias matrices from falling into a local optimum while training the DNN model. First, dynamic simulations for a vehicle are performed based on an efficient semirecursive multibody model for real-time data acquisition. Next, the vehicle data are processed and used to train and test the improved DNN model. The vehicle responses, which are obtained from the LDWPSO-DNN and IWO-DNN models, are compared with the DNN and multibody results. The comparative results show that the LDWPSO-DNN and IWO-DNN models predict accurate longitudinal-lateral responses in real-time without falling into a local optimum. The improved DNN model based on optimization algorithms can be employed for real-time simulation and preview control in intelligent vehicles.

摘要

我们提出了一种基于两种优化算法(即线性递减权重粒子群优化(LDWPSO)算法和入侵杂草优化(IWO)算法)的改进 DNN 建模方法,用于预测车辆的纵向-横向响应。所提出的改进方法可以在训练 DNN 模型时防止权重矩阵和偏差矩阵的解陷入局部最优。首先,基于有效的半递归多体模型进行车辆的动态仿真,以进行实时数据采集。接下来,处理车辆数据并用于训练和测试改进的 DNN 模型。将从 LDWPSO-DNN 和 IWO-DNN 模型获得的车辆响应与 DNN 和多体结果进行比较。比较结果表明,LDWPSO-DNN 和 IWO-DNN 模型可以实时预测准确的纵向-横向响应,而不会陷入局部最优。基于优化算法的改进 DNN 模型可用于智能车辆的实时仿真和预瞄控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78a3/9269210/fc7acbbafc4a/sensors-22-04676-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验