Suppr超能文献

模糊辅助移动边缘协调器和 SARSA 学习在异构物联网环境中的灵活卸载。

Fuzzy-Assisted Mobile Edge Orchestrator and SARSA Learning for Flexible Offloading in Heterogeneous IoT Environment.

机构信息

Department of Computer Science and Engineering, Kyung Hee University, Yongin 17104, Korea.

School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam.

出版信息

Sensors (Basel). 2022 Jun 23;22(13):4727. doi: 10.3390/s22134727.

Abstract

In the era of heterogeneous 5G networks, Internet of Things (IoT) devices have significantly altered our daily life by providing innovative applications and services. However, these devices process large amounts of data traffic and their application requires an extremely fast response time and a massive amount of computational resources, leading to a high failure rate for task offloading and considerable latency due to congestion. To improve the quality of services (QoS) and performance due to the dynamic flow of requests from devices, numerous task offloading strategies in the area of multi-access edge computing (MEC) have been proposed in previous studies. Nevertheless, the neighboring edge servers, where computational resources are in excess, have not been considered, leading to unbalanced loads among edge servers in the same network tier. Therefore, in this paper, we propose a collaboration algorithm between a fuzzy-logic-based mobile edge orchestrator (MEO) and state-action-reward-state-action (SARSA) reinforcement learning, which we call the Fu-SARSA algorithm. We aim to minimize the failure rate and service time of tasks and decide on the optimal resource allocation for offloading, such as a local edge server, cloud server, or the best neighboring edge server in the MEC network. Four typical application types, healthcare, AR, infotainment, and compute-intensive applications, were used for the simulation. The performance results demonstrate that our proposed Fu-SARSA framework outperformed other algorithms in terms of service time and the task failure rate, especially when the system was overloaded.

摘要

在异构的 5G 网络时代,物联网 (IoT) 设备通过提供创新的应用和服务,极大地改变了我们的日常生活。然而,这些设备处理大量的数据流量,其应用需要极快的响应时间和大量的计算资源,导致任务卸载的失败率很高,并且由于拥塞而导致相当大的延迟。为了提高服务质量 (QoS) 和性能,针对设备请求的动态流,在多接入边缘计算 (MEC) 领域提出了许多任务卸载策略。然而,没有考虑到计算资源过剩的相邻边缘服务器,导致同一网络层中的边缘服务器负载不平衡。因此,在本文中,我们提出了一种基于模糊逻辑的移动边缘编排器 (MEO) 和状态-动作-奖励-状态-动作 (SARSA) 强化学习之间的协作算法,我们称之为 Fu-SARSA 算法。我们的目标是最小化任务的失败率和服务时间,并决定最佳的资源分配用于卸载,例如本地边缘服务器、云服务器或 MEC 网络中的最佳相邻边缘服务器。我们使用了四种典型的应用类型,即医疗保健、增强现实、信息娱乐和计算密集型应用,进行了模拟。性能结果表明,我们提出的 Fu-SARSA 框架在服务时间和任务失败率方面优于其他算法,特别是在系统过载时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4635/9269038/d31fdf51c824/sensors-22-04727-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验