Suppr超能文献

NRT-YOLO:基于嵌套残差Transformer 的改进型 YOLOv5 用于微小遥感目标检测。

NRT-YOLO: Improved YOLOv5 Based on Nested Residual Transformer for Tiny Remote Sensing Object Detection.

机构信息

Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2022 Jun 30;22(13):4953. doi: 10.3390/s22134953.

Abstract

To address the problems of tiny objects and high resolution of object detection in remote sensing imagery, the methods with coarse-grained image cropping have been widely studied. However, these methods are always inefficient and complex due to the two-stage architecture and the huge computation for split images. For these reasons, this article employs YOLO and presents an improved architecture, NRT-YOLO. Specifically, the improvements can be summarized as: extra prediction head and related feature fusion layers; novel nested residual Transformer module, C3NRT; nested residual attention module, C3NRA; and multi-scale testing. The C3NRT module presented in this paper could boost accuracy and reduce complexity of the network at the same time. Moreover, the effectiveness of the proposed method is demonstrated by three kinds of experiments. NRT-YOLO achieves 56.9% mAP with only 38.1 M parameters in the DOTA dataset, exceeding YOLOv5l by 4.5%. Also, the results of different classifications show its excellent ability to detect small sample objects. As for the C3NRT module, the ablation study and comparison experiment verified that it has the largest contribution to accuracy increment (2.7% in mAP) among the improvements. In conclusion, NRT-YOLO has excellent performance in accuracy improvement and parameter reduction, which is suitable for tiny remote sensing object detection.

摘要

为了解决遥感图像中小目标和高分辨率目标检测的问题,已经广泛研究了采用粗粒度图像裁剪的方法。然而,由于两阶段架构和分割图像的巨大计算量,这些方法通常效率低下且复杂。基于此,本文采用了 YOLO 并提出了一种改进的架构 NRT-YOLO。具体来说,改进可以概括为:额外的预测头和相关的特征融合层;新颖的嵌套残差 Transformer 模块 C3NRT;嵌套残差注意力模块 C3NRA;以及多尺度测试。本文提出的 C3NRT 模块能够在提高网络精度的同时降低复杂度。此外,通过三种实验验证了所提出方法的有效性。在 DOTA 数据集上,NRT-YOLO 仅使用 38.1M 参数就实现了 56.9%的 mAP,比 YOLOv5l 高 4.5%。此外,不同分类的结果表明其具有检测小样本目标的出色能力。对于 C3NRT 模块,消融研究和对比实验验证了它在精度提升方面的最大贡献(mAP 增加 2.7%)。总之,NRT-YOLO 在提高精度和减少参数方面具有出色的性能,非常适合微小遥感目标检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/405c/9269754/fab1c31dce96/sensors-22-04953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验