Suppr超能文献

基于SSBK聚类的双精细制导传感器导星目录构建

Construction of the Guide Star Catalog for Double Fine Guidance Sensors Based on SSBK Clustering.

作者信息

Yang Yuanyu, Yin Dayi, Zhang Quan, Li Zhiming

机构信息

Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2022 Jul 2;22(13):4996. doi: 10.3390/s22134996.

Abstract

In the Chinese Survey Space Telescope (CSST), the Fine Guidance Sensor (FGS) is required to provide high-precision attitude information of the space telescope. The fine star guide catalog is an essential part of the FGS. It is not only the basis for star identification and attitude determination but also the key to determining the absolute attitude of the space telescope. However, the capacity and uniformity of the fine guide star catalog will affect the performance of the FGS. To build a guide star catalog with uniform distribution of guide stars and catalog capacity that is as small as possible, and to effectively improve the speed of star identification and the accuracy of attitude determination, the spherical spiral binary K-means clustering algorithm (SSBK) is proposed. Based on the selection criteria, firstly, the spherical spiral reference point method is used for global uniform division, and then, the K-means clustering algorithm in machine learning is introduced to divide the stars into several disjoint subsets through the use of angular distance and dichotomy so that the guide stars are uniformly distributed. We assume that the field of view (FOV) is 0.2° × 0.2°, the magnitude range is 9∼15 mag, and the threshold for the number of stars (NOS) in the FOV is 9. The simulation shows that compared with the magnitude filtering method (MFM) and the spherical spiral reference point brightness optimization algorithm (SSRP), the guide star catalog based on the SSBK algorithm has the lowest standard deviation of the NOS in the FOV, and the probability of 5∼15 stars is the highest (over 99.4%), which can ensure a higher identification probability and attitude determination accuracy.

摘要

在中国巡天空间望远镜(CSST)中,精细制导传感器(FGS)需要提供空间望远镜的高精度姿态信息。精细导星目录是FGS的重要组成部分。它不仅是恒星识别和姿态确定的基础,也是确定空间望远镜绝对姿态的关键。然而,精细导星目录的容量和均匀性会影响FGS的性能。为了构建一个导星分布均匀且目录容量尽可能小的导星目录,并有效提高恒星识别速度和姿态确定精度,提出了球形螺旋二元K均值聚类算法(SSBK)。基于选择标准,首先采用球形螺旋参考点法进行全局均匀划分,然后引入机器学习中的K均值聚类算法,通过角距离和二分法将恒星划分为几个不相交的子集,使导星均匀分布。我们假设视场(FOV)为0.2°×0.2°,星等范围为9∼15等,视场中恒星数量(NOS)的阈值为9。仿真结果表明,与星等滤波法(MFM)和球形螺旋参考点亮度优化算法(SSRP)相比,基于SSBK算法的导星目录在视场中NOS的标准差最低,5∼15颗星的概率最高(超过99.4%),能够保证更高的识别概率和姿态确定精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf9/9269692/63c338ee2ee9/sensors-22-04996-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验