Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China.
Plant Physiol. 2022 Sep 28;190(2):1307-1320. doi: 10.1093/plphys/kiac330.
Magnesium (Mg) is an essential metal for chlorophyll biosynthesis and other metabolic processes in plant cells. Mg is largely stored in the vacuole of various cell types and remobilized to meet cytoplasmic demand. However, the transport proteins responsible for mobilizing vacuolar Mg2+ remain unknown. Here, we identified two Arabidopsis (Arabidopsis thaliana) Mg2+ transporters (MAGNESIUM TRANSPORTER 1 and 2; MGT1 and MGT2) that facilitate Mg2+ mobilization from the vacuole, especially when external Mg supply is limited. In addition to a high degree of sequence similarity, MGT1 and MGT2 exhibited overlapping expression patterns in Arabidopsis tissues, implying functional redundancy. Indeed, the mgt1 mgt2 double mutant, but not mgt1 and mgt2 single mutants, showed exaggerated growth defects as compared to the wild type under low-Mg conditions, in accord with higher expression levels of Mg-starvation gene markers in the double mutant. However, overall Mg level was also higher in mgt1 mgt2, suggesting a defect in Mg2+ remobilization in response to Mg deficiency. Consistently, MGT1 and MGT2 localized to the tonoplast and rescued the yeast (Saccharomyces cerevisiae) mnr2Δ (manganese resistance 2) mutant strain lacking the vacuolar Mg2+ efflux transporter. In addition, disruption of MGT1 and MGT2 suppressed high-Mg sensitivity of calcineurin B-like 2 and 3 (cbl2 cbl3), a mutant defective in vacuolar Mg2+ sequestration, suggesting that vacuolar Mg2+ influx and efflux processes are antagonistic in a physiological context. We further crossed mgt1 mgt2 with mgt6, which lacks a plasma membrane MGT member involved in Mg2+ uptake, and found that the triple mutant was more sensitive to low-Mg conditions than either mgt1 mgt2 or mgt6. Hence, Mg2+ uptake (via MGT6) and vacuolar remobilization (through MGT1 and MGT2) work synergistically to achieve Mg2+ homeostasis in plants, especially under low-Mg supply in the environment.
镁(Mg)是植物细胞中叶绿素生物合成和其他代谢过程所必需的金属。Mg 主要储存在各种细胞类型的液泡中,并在细胞质需求时重新移动。然而,负责动员液泡中 Mg2+的转运蛋白仍然未知。在这里,我们鉴定了两种拟南芥(Arabidopsis thaliana)的 Mg2+转运蛋白(MAGNESIUM TRANSPORTER 1 和 2;MGT1 和 MGT2),它们促进了 Mg2+从液泡中的动员,尤其是在外部 Mg 供应有限时。除了高度的序列相似性外,MGT1 和 MGT2 在拟南芥组织中的表达模式重叠,表明功能冗余。事实上,与野生型相比,mgt1 mgt2 双突变体在低 Mg 条件下表现出更为严重的生长缺陷,这与双突变体中 Mg 饥饿基因标记物的更高表达水平一致。然而,mgt1 mgt2 中的总 Mg 水平也较高,表明其在响应 Mg 缺乏时的 Mg2+再动员存在缺陷。一致地,MGT1 和 MGT2 定位于液泡膜,并挽救了酵母(Saccharomyces cerevisiae)mnr2Δ(锰抗性 2)突变体菌株,该菌株缺乏液泡内 Mg2+外排转运蛋白。此外,MGT1 和 MGT2 的破坏抑制了 calcineurin B-like 2 和 3(cbl2 cbl3)的高 Mg 敏感性,cbl2 cbl3 是一种液泡内 Mg2+隔离缺陷的突变体,表明在生理环境中,液泡内 Mg2+的流入和流出过程是拮抗的。我们进一步将 mgt1 mgt2 与 mgt6 杂交,mgt6 缺乏参与 Mg2+摄取的质膜 MGT 成员,发现三突变体比 mgt1 mgt2 或 mgt6 对低 Mg 条件更敏感。因此,Mg2+摄取(通过 MGT6)和液泡再动员(通过 MGT1 和 MGT2)协同作用,以在植物中实现 Mg2+的动态平衡,特别是在环境中低 Mg 供应时。