Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Universidade da Coruña, 15071 A Coruña, Spain.
Mar Pollut Bull. 2022 Aug;181:113897. doi: 10.1016/j.marpolbul.2022.113897. Epub 2022 Jul 7.
The presence and effects of microplastics in the environment is being continuously studied, so the need for a reliable approach to ascertain the polymer/s constituting them has increased. To characterize them, infrared (IR) spectrometry is commonly applied, either reflectance or attenuated total reflectance (ATR). A common problem when considering field samples is their weathering and biofouling, which modify their spectra. Hence, relying on spectral matching between the unknown spectrum and spectral databases is largely defective. In this paper, the use of IR spectra combined with pattern recognition techniques (principal components analysis, classification and regression trees and support vector classification) is explored first time to identify a collection of typical polymers regardless of their ageing. Results show that it is possible to identify them using a reduced suite of spectral wavenumbers with coherent chemical meaning. The models were validated using two datasets containing artificially weathered polymers and field samples.
环境中微塑料的存在和影响正在不断被研究,因此需要一种可靠的方法来确定它们所构成的聚合物。为了对其进行表征,通常会应用红外(IR)光谱法,包括反射或衰减全反射(ATR)。在考虑野外样品时,常见的问题是它们的风化和生物污垢,这会改变它们的光谱。因此,在很大程度上依赖于未知光谱与光谱数据库之间的光谱匹配是有缺陷的。本文首次探索了将红外光谱与模式识别技术(主成分分析、分类和回归树以及支持向量分类)相结合,以识别一组典型的聚合物,而不考虑它们的老化。结果表明,使用具有一致化学意义的简化光谱波数集,有可能识别它们。这些模型使用包含人工风化聚合物和野外样本的两个数据集进行了验证。