文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

压力超负荷激活心脏基质细胞中的DNA损伤反应:射血分数保留的心力衰竭背后的新机制?

Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction?

作者信息

Stadiotti Ilaria, Santoro Rosaria, Scopece Alessandro, Pirola Sergio, Guarino Anna, Polvani Gianluca, Maione Angela Serena, Ascione Flora, Li Qingsen, Delia Domenico, Foiani Marco, Pompilio Giulio, Sommariva Elena

机构信息

Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy.

Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy.

出版信息

Front Cardiovasc Med. 2022 Jun 23;9:878268. doi: 10.3389/fcvm.2022.878268. eCollection 2022.


DOI:10.3389/fcvm.2022.878268
PMID:35811699
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9259931/
Abstract

Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterized by impaired left ventricular (LV) diastolic function, with normal LV ejection fraction. Aortic valve stenosis can cause an HFpEF-like syndrome by inducing sustained pressure overload (PO) and cardiac remodeling, as cardiomyocyte (CM) hypertrophy and fibrotic matrix deposition. Recently, studies linked PO maladaptive myocardial changes and DNA damage response (DDR) activation: DDR-persistent activation contributes to mouse CM hypertrophy and inflammation, promoting tissue remodeling, and HF. Despite the wide acknowledgment of the pivotal role of the stromal compartment in the fibrotic response to PO, the possible effects of DDR-persistent activation in cardiac stromal cell (C-MSC) are still unknown. Finally, this novel mechanism was not verified in human samples. This study aims to unravel the effects of PO-induced DDR on human C-MSC phenotypes. Human LV septum samples collected from severe aortic stenosis with HFpEF-like syndrome patients undergoing aortic valve surgery and healthy controls (HCs) were used both for histological tissue analyses and C-MSC isolation. PO-induced mechanical stimuli were simulated by cyclic unidirectional stretch. Interestingly, HFpEF tissue samples revealed DNA damage both in CM and C-MSC. DDR-activation markers γH2AX, pCHK1, and pCHK2 were expressed at higher levels in HFpEF total tissue than in HC. Primary C-MSC isolated from HFpEF and HC subjects and expanded confirmed the increased γH2AX and phosphorylated checkpoint protein expression, suggesting a persistent DDR response, in parallel with a higher expression of pro-fibrotic and pro-inflammatory factors respect to HC cells, hinting to a DDR-driven remodeling of HFpEF C-MSC. Pressure overload was simulated , and persistent activation of the CHK1 axis was induced in response to mechanical stretching, which also increased C-MSC secreted pro-inflammatory and pro-fibrotic molecules. Finally, fibrosis markers were reverted by the treatment with a CHK1/ATR pathway inhibitor, confirming a cause-effect relationship. In conclusion we demonstrated that, in severe aortic stenosis with HFpEF-like syndrome patients, PO induces DDR-persistent activation not only in CM but also in C-MSC. In C-MSC, DDR activation leads to inflammation and fibrosis, which can be prevented by specific DDR targeting.

摘要

射血分数保留的心力衰竭(HFpEF)是一种异质性综合征,其特征为左心室(LV)舒张功能受损,而LV射血分数正常。主动脉瓣狭窄可通过诱导持续性压力超负荷(PO)和心脏重塑,如心肌细胞(CM)肥大和纤维化基质沉积,导致类似HFpEF的综合征。最近,研究将PO适应性不良的心肌变化与DNA损伤反应(DDR)激活联系起来:DDR的持续激活导致小鼠CM肥大和炎症,促进组织重塑和心力衰竭。尽管人们广泛认识到基质区室在对PO的纤维化反应中的关键作用,但DDR持续激活对心脏基质细胞(C-MSC)的可能影响仍不清楚。最后,这一新机制尚未在人类样本中得到验证。本研究旨在揭示PO诱导的DDR对人C-MSC表型的影响。从患有类似HFpEF综合征的严重主动脉瓣狭窄且接受主动脉瓣手术的患者以及健康对照(HC)中收集的人LV间隔样本用于组织学组织分析和C-MSC分离。通过周期性单向拉伸模拟PO诱导的机械刺激。有趣的是,HFpEF组织样本在CM和C-MSC中均显示出DNA损伤。DDR激活标志物γH2AX、pCHK1和pCHK2在HFpEF全组织中的表达水平高于HC。从HFpEF和HC受试者中分离并扩增的原代C-MSC证实γH2AX和磷酸化检查点蛋白表达增加,表明DDR反应持续存在,同时与HC细胞相比促纤维化和促炎因子的表达更高,提示HFpEF C-MSC存在DDR驱动的重塑。模拟压力超负荷,并在机械拉伸后诱导CHK1轴的持续激活,这也增加了C-MSC分泌的促炎和促纤维化分子。最后,用CHK1/ATR途径抑制剂治疗可使纤维化标志物恢复,证实了因果关系。总之,我们证明,在患有类似HFpEF综合征的严重主动脉瓣狭窄患者中,PO不仅在CM中诱导DDR持续激活,而且在C-MSC中也诱导DDR持续激活。在C-MSC中,DDR激活导致炎症和纤维化,通过特异性靶向DDR可预防这种情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/f12634e3e0af/fcvm-09-878268-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/65967dfa1ad9/fcvm-09-878268-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/ca922703d82d/fcvm-09-878268-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/ea1e466af51b/fcvm-09-878268-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/67aee2854039/fcvm-09-878268-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/54887f2a49bd/fcvm-09-878268-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/f12634e3e0af/fcvm-09-878268-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/65967dfa1ad9/fcvm-09-878268-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/ca922703d82d/fcvm-09-878268-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/ea1e466af51b/fcvm-09-878268-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/67aee2854039/fcvm-09-878268-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/54887f2a49bd/fcvm-09-878268-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7d/9259931/f12634e3e0af/fcvm-09-878268-g0006.jpg

相似文献

[1]
Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction?

Front Cardiovasc Med. 2022-6-23

[2]
Cardiac sympathetic overdrive, M2 macrophage activation and fibroblast heterogeneity are associated with cardiac remodeling in a chronic pressure overload rat model of HFpEF.

Front Pharmacol. 2024-5-27

[3]
Sex-specific responses to slow progressive pressure overload in a large animal model of HFpEF.

Am J Physiol Heart Circ Physiol. 2022-10-1

[4]
A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation.

J Am Coll Cardiol. 2013-5-15

[5]
Characterizing heart failure with preserved and reduced ejection fraction: An imaging and plasma biomarker approach.

PLoS One. 2020-4-29

[6]
Combining three independent pathological stressors induces a heart failure with preserved ejection fraction phenotype.

Am J Physiol Heart Circ Physiol. 2023-4-1

[7]
Telmisartan ameliorates cardiac fibrosis and diastolic function in cardiorenal heart failure with preserved ejection fraction.

Exp Biol Med (Maywood). 2021-12

[8]
Myocardial expression of somatotropic axis, adrenergic signalling, and calcium handling genes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction.

ESC Heart Fail. 2021-4

[9]
Clinical Phenotypes of Heart Failure With Preserved Ejection Fraction to Select Preclinical Animal Models.

JACC Basic Transl Sci. 2022-5-25

[10]
Impaired systolic function by strain imaging in heart failure with preserved ejection fraction.

J Am Coll Cardiol. 2013-10-30

引用本文的文献

[1]
Caloric restriction and its mimetics in heart failure with preserved ejection fraction: mechanisms and therapeutic potential.

Cardiovasc Diabetol. 2025-1-18

[2]
Pathophysiological insights into HFpEF from studies of human cardiac tissue.

Nat Rev Cardiol. 2025-2

[3]
Different heart failure phenotypes of valvular heart disease: the role of mitochondrial dysfunction.

Front Cardiovasc Med. 2023-5-19

本文引用的文献

[1]
The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy.

Acta Pharm Sin B. 2022-1

[2]
Prognostic Value of Multiple Circulating Biomarkers for 2-Year Death in Acute Heart Failure With Preserved Ejection Fraction.

Front Cardiovasc Med. 2021-12-9

[3]
Progress towards a clinically-successful ATR inhibitor for cancer therapy.

Curr Res Pharmacol Drug Discov. 2021-2-5

[4]
Heart failure with preserved ejection fraction: a stepchild no more!

Eur Heart J. 2021-10-7

[5]
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.

Eur Heart J. 2021-9-21

[6]
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets.

Int J Mol Sci. 2021-7-17

[7]
The effects of cardiac stretch on atrial fibroblasts: analysis of the evidence and potential role in atrial fibrillation.

Cardiovasc Res. 2022-1-29

[8]
Matrix Metalloproteinases Repress Hypertrophic Growth in Cardiac Myocytes.

Cardiovasc Drugs Ther. 2021-4

[9]
First-in-Human Trial of the Oral Ataxia Telangiectasia and RAD3-Related (ATR) Inhibitor BAY 1895344 in Patients with Advanced Solid Tumors.

Cancer Discov. 2021-1

[10]
A cardiomyocyte show of force: A fluorescent alpha-actinin reporter line sheds light on human cardiomyocyte contractility versus substrate stiffness.

J Mol Cell Cardiol. 2020-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索