Suppr超能文献

探索轻量化深度学习下的中文数字资源发展

Exploring the Development of Chinese Digital Resources under Lightweight Deep Learning.

机构信息

School of Humanities and Social Sciences, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Comput Intell Neurosci. 2022 Jun 29;2022:3759129. doi: 10.1155/2022/3759129. eCollection 2022.

Abstract

From 2019, countries worldwide have been negatively affected by the corona virus disease 2019 (COVID-19) in all aspects of social life. The high-tech digital industry represented by emerging digital technologies is still vigorous, and correspondingly, the digital economy has become an important force to promote the stable recovery and re-prosperity of the national economy. The digital economy plays a memorable role in preventing and controlling COVID-19, the resumption of work and production, and the creation of new business formats and models. Urban big data (UBD) involves a wide range of dynamic and static data with high dimensions, but there are no mature and clear data classification and grading standards. Currently, it is urgent to strengthen the security protection of high-value datasets. Therefore, a UBD classification and grading method is proposed based on the lightweight (LWT) deep learning (DL) clustering algorithm. It uses a semi-intelligent path based on partial artificial to form data classification (DC) and hierarchical thesaurus, corpus, rule base, and model base. Subsequently, a big data analysis system is built for unstructured and structured data association analysis based on deep learning, spatiotemporal correlation, and big data technology to improve data value and adapt to multiscenario applications. Meanwhile, with the help of data and graphics processing tool Tableau, the present work analyzes the development status and existing problems of digital resources in China. The results show that although China's digital infrastructure is the top in the world, the trading infrastructure is still only 41.65 percentage points. This shows that China's digital economy still has a lot of room for growth in distribution and trading. The analysis of the ownership of data resources indicates that the scores of China's digital economy in accounting, privacy, and security are very low, only 2.4 points, 5.1 points, and 11 points, respectively. This study has solved the problems of distribution and trade in China's digital economy through research and put forward corresponding suggestions for the current development of China's digital economy market. Hence, a preliminary summary and suggestions are made on the development of China's data resources, to promote the open sharing of data, strengthen the management of data quality, activate the data resource market, strengthen data security, and enhance the vitality of the market economy.

摘要

自 2019 年以来,全球各国在社会生活的方方面面都受到了 2019 年冠状病毒病(COVID-19)的负面影响。以新兴数字技术为代表的高科技数字产业仍然充满活力,相应地,数字经济已成为促进国民经济稳定复苏和繁荣的重要力量。数字经济在防控 COVID-19、复工复产、创造新业态新模式等方面发挥了重要作用。城市大数据(UBD)涉及范围广泛的动态和静态数据,具有较高的维度,但没有成熟和明确的数据分类和分级标准。目前,加强高价值数据集的安全保护迫在眉睫。因此,提出了一种基于轻量级(LWT)深度学习(DL)聚类算法的 UBD 分类分级方法。它使用基于部分人工的半智能路径来形成数据分类(DC)和层次主题词表、语料库、规则库和模型库。随后,构建了一个基于深度学习、时空相关性和大数据技术的非结构化和结构化数据关联分析的大数据分析系统,以提高数据价值并适应多场景应用。同时,借助数据和图形处理工具 Tableau,对中国数字资源的发展现状和存在问题进行了分析。结果表明,尽管中国的数字基础设施是世界上最好的,但交易基础设施仅为 41.65 个百分点。这表明中国的数字经济在分配和交易方面仍有很大的增长空间。对数据资源所有权的分析表明,中国数字经济在会计、隐私和安全方面的得分非常低,分别为 2.4 分、5.1 分和 11 分。本研究通过研究解决了中国数字经济的分配和贸易问题,并为中国数字经济市场的发展提出了相应的建议。因此,对中国数据资源的发展提出了初步的总结和建议,以促进数据的开放共享,加强数据质量的管理,激活数据资源市场,加强数据安全,增强市场经济活力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b306/9259327/40e0074180c9/CIN2022-3759129.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验