Suppr超能文献

基于蚁群算法和最小二乘支持向量机的光合细菌发酵过程软测量方法研究

Research on soft sensing method of photosynthetic bacteria fermentation process based on ant colony algorithm and least squares support vector machine.

作者信息

Feng Xu, Hong-Yu Tang, Bo Wang, Xiang-Lin Zhu

机构信息

School of Electrical and Information, Zhenjiang College, Zhenjiang, China.

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, China.

出版信息

Prep Biochem Biotechnol. 2023;53(4):341-352. doi: 10.1080/10826068.2022.2090002. Epub 2022 Jul 11.

Abstract

Photosynthetic bacteria wastewater treatment is an efficient water pollution treatment method, but photosynthetic bacteria fermentation is a multivariable, non-linear, and time-varying process. So it is difficult to establish an accurate model. Aiming at the difficulty of online measurement of key parameters, such as bacterial concentration and matrix concentration in photosynthetic bacteria fermentation process, an improved ant colony algorithm least squares support vector machine (AC-LSSVM) soft sensing model method is proposed in this paper. Firstly, the virtual sensing subsystem of the photosynthetic bacteria fermentation process is proposed, with measurable parameters as input and unmeasurable key parameters as output, and the left inverse soft sensing model of virtual sensing is constructed. Then, the ant colony algorithm can quickly find the shortest path to optimize the parameters of the traditional PI regulation, to improve the dynamic performance and accuracy of parameter measurement in the fermentation process. After that, the ant colony algorithm is used to optimize penalty parameters C and kernel parameters σ of LSSVM, which effectively avoids the local optimization and improves the computing power and global optimization ability. Finally, the soft sensing prediction model of the photosynthetic bacteria fermentation process based on AC-LSSVM is established. Compared with SVM and LSSVM prediction models, the root mean square error of bacterial concentration and matrix concentration based on the AC-LSSVM model are 0.468 and 0.126, respectively. The simulation analysis shows that this model has less error and better prediction ability, and it can meet the needs of online prediction of key parameters of photosynthetic bacteria fermentation.

摘要

光合细菌废水处理是一种高效的水污染处理方法,但光合细菌发酵是一个多变量、非线性且时变的过程。因此,难以建立精确的模型。针对光合细菌发酵过程中细菌浓度和基质浓度等关键参数在线测量的困难,本文提出了一种改进的蚁群算法最小二乘支持向量机(AC-LSSVM)软测量模型方法。首先,提出光合细菌发酵过程的虚拟传感子系统,以可测量参数为输入,不可测量的关键参数为输出,构建虚拟传感的左逆软测量模型。然后,蚁群算法能够快速找到最短路径来优化传统PI调节的参数,以提高发酵过程中参数测量的动态性能和准确性。之后,利用蚁群算法优化LSSVM的惩罚参数C和核参数σ,有效避免局部优化,提高计算能力和全局优化能力。最后,建立基于AC-LSSVM的光合细菌发酵过程软测量预测模型。与SVM和LSSVM预测模型相比,基于AC-LSSVM模型的细菌浓度和基质浓度的均方根误差分别为0.468和0.126。仿真分析表明,该模型误差较小,预测能力较好,能够满足光合细菌发酵关键参数在线预测的需求。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验