Suppr超能文献

用于磁共振成像中膀胱壁和癌症分割的内容与形状注意力网络

Content and shape attention network for bladder wall and cancer segmentation in MRIs.

作者信息

Dong Qi, Huang Dong, Xu Xiaopan, Li Ziqi, Liu Yan, Lu Hongbing, Liu Yang

机构信息

Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China.

Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China.

出版信息

Comput Biol Med. 2022 Sep;148:105809. doi: 10.1016/j.compbiomed.2022.105809. Epub 2022 Jul 2.

Abstract

Accurate segmentation of the bladder wall and cancer is the key to preoperatively predicting patients' muscle-invasive status. However, the segmentation of bladder wall and cancer have many challenges, including complex background distribution, a variety of bladder shapes, and weak boundary. For these issues, we propose a deep network that consists of a content attention module and a shape attention module. In the content attention module, we employ the attention U-Net to emphasize salient image features that are useful for the segmentation task. The shape attention module uses a spatial transform network to introduce a shape prior, which ensures a closed bladder wall in segmentation results. Experimental results show that the proposed model has a competitive performance compared to the existing methods. The mean DSCs of the 5-fold cross-validation was 0.80 and 0.84 for bladder wall and cancer respectively. From the visualization, our approach can mitigate the issue of complex background and weak boundary in bladder wall and cancer segmentation effectively.

摘要

准确分割膀胱壁和癌症是术前预测患者肌肉浸润状态的关键。然而,膀胱壁和癌症的分割存在许多挑战,包括复杂的背景分布、各种膀胱形状以及边界模糊。针对这些问题,我们提出了一种深度网络,该网络由内容注意力模块和形状注意力模块组成。在内容注意力模块中,我们采用注意力U-Net来强调对分割任务有用的显著图像特征。形状注意力模块使用空间变换网络引入形状先验,以确保分割结果中膀胱壁的闭合。实验结果表明,与现有方法相比,所提出的模型具有竞争力。5折交叉验证中膀胱壁和癌症的平均DSC分别为0.80和0.84。从可视化结果来看,我们的方法可以有效缓解膀胱壁和癌症分割中复杂背景和边界模糊的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验