Suppr超能文献

细胞外基质对血管形态发生、成熟和稳定的调节

Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization.

作者信息

Davis George E, Kemp Scott S

机构信息

Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA

Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA.

出版信息

Cold Spring Harb Perspect Med. 2023 Apr 3;13(4):a041156. doi: 10.1101/cshperspect.a041156.

Abstract

The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.

摘要

细胞外基质是胚胎发育和出生后生命过程中组织血管化的关键调节因子。从这个角度来看,我们提供了关键信息和概念,重点关注细胞外基质如何控制毛细血管的组装、成熟和稳定,此外,还有助于组织的稳定性和健康。特别是,我们展示并讨论了以下方面的机制细节:(1)细胞外基质在控制血管形态发生不同步骤中的作用;(2)内皮细胞(ECs)和周细胞共同组装成带有相关周细胞和基底膜基质的细长且狭窄的毛细血管内皮细胞内衬管的能力;(3)确定形成稳定毛细血管网络所需的特定生长因子组合(“因子”)和肽,以及协调的“因子”和细胞外基质受体信号通路。

相似文献

1
Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization.
Cold Spring Harb Perspect Med. 2023 Apr 3;13(4):a041156. doi: 10.1101/cshperspect.a041156.
3
Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting.
Int Rev Cell Mol Biol. 2011;288:101-65. doi: 10.1016/B978-0-12-386041-5.00003-0.
10
The pericyte microenvironment during vascular development.
Microcirculation. 2019 Nov;26(8):e12554. doi: 10.1111/micc.12554. Epub 2019 May 27.

引用本文的文献

1
Exosomes derived from fibroblasts enhance skin wound angiogenesis by regulating HIF-1α/VEGF/VEGFR pathway.
Burns Trauma. 2025 May 27;13:tkae071. doi: 10.1093/burnst/tkae071. eCollection 2025.
2
Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives.
Signal Transduct Target Ther. 2025 May 19;10(1):170. doi: 10.1038/s41392-025-02249-0.
3
Preparation and characterization of a rat uterine decellularized scaffold.
Gland Surg. 2024 Dec 31;13(12):2372-2382. doi: 10.21037/gs-24-474. Epub 2024 Dec 19.
4
Enhancing human capillary tube network assembly and maturation through upregulated expression of pericyte-derived TIMP-3.
Front Cell Dev Biol. 2024 Oct 31;12:1465806. doi: 10.3389/fcell.2024.1465806. eCollection 2024.
6
Selective mural cell recruitment of pericytes to networks of assembling endothelial cell-lined tubes.
Front Cell Dev Biol. 2024 Jun 19;12:1389607. doi: 10.3389/fcell.2024.1389607. eCollection 2024.
9
Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence.
Arterioscler Thromb Vasc Biol. 2023 Sep;43(9):1599-1616. doi: 10.1161/ATVBAHA.123.318237. Epub 2023 Jul 6.
10
Molecular basis for pericyte-induced capillary tube network assembly and maturation.
Front Cell Dev Biol. 2022 Aug 22;10:943533. doi: 10.3389/fcell.2022.943533. eCollection 2022.

本文引用的文献

1
Intra-vessel heterogeneity establishes enhanced sites of macromolecular leakage downstream of laminin α5.
Cell Rep. 2021 Jun 22;35(12):109268. doi: 10.1016/j.celrep.2021.109268.
2
Basement membrane collagen IV deficiency promotes abdominal aortic aneurysm formation.
Sci Rep. 2021 Jun 18;11(1):12903. doi: 10.1038/s41598-021-92303-y.
3
Angiodiversity and organotypic functions of sinusoidal endothelial cells.
Angiogenesis. 2021 May;24(2):289-310. doi: 10.1007/s10456-021-09780-y. Epub 2021 Mar 21.
4
Defining an Upstream VEGF (Vascular Endothelial Growth Factor) Priming Signature for Downstream Factor-Induced Endothelial Cell-Pericyte Tube Network Coassembly.
Arterioscler Thromb Vasc Biol. 2020 Dec;40(12):2891-2909. doi: 10.1161/ATVBAHA.120.314517. Epub 2020 Oct 22.
5
Defining Endothelial Cell-Derived Factors That Promote Pericyte Recruitment and Capillary Network Assembly.
Arterioscler Thromb Vasc Biol. 2020 Nov;40(11):2632-2648. doi: 10.1161/ATVBAHA.120.314948. Epub 2020 Aug 20.
6
Proinflammatory Mediators, IL (Interleukin)-1β, TNF (Tumor Necrosis Factor) α, and Thrombin Directly Induce Capillary Tube Regression.
Arterioscler Thromb Vasc Biol. 2020 Feb;40(2):365-377. doi: 10.1161/ATVBAHA.119.313536. Epub 2019 Dec 19.
7
VEGF in Signaling and Disease: Beyond Discovery and Development.
Cell. 2019 Mar 7;176(6):1248-1264. doi: 10.1016/j.cell.2019.01.021.
8
Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing.
Nat Commun. 2018 Jun 4;9(1):2163. doi: 10.1038/s41467-018-04525-w.
9
Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain.
Dev Cell. 2018 Mar 26;44(6):665-678.e6. doi: 10.1016/j.devcel.2018.01.018. Epub 2018 Feb 15.
10
Src- and Fyn-dependent apical membrane trafficking events control endothelial lumen formation during vascular tube morphogenesis.
PLoS One. 2017 Sep 14;12(9):e0184461. doi: 10.1371/journal.pone.0184461. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验