Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America.
Department of Biological Sciences, Wayne State University, Detroit, MI 48202, United States of America; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, United States of America.
Biochim Biophys Acta Mol Cell Res. 2022 Oct;1869(10):119322. doi: 10.1016/j.bbamcr.2022.119322. Epub 2022 Jul 9.
The SIN3 scaffolding protein is a conserved transcriptional regulator known to fine-tune gene expression. In Drosophila, there are two major isoforms of SIN3, SIN3 220 and SIN3 187, which each assemble into multi-subunit histone modifying complexes. The isoforms have distinct developmental expression patterns and non-redundant functions. Gene regulatory network analyses indicate that both isoforms affect genes encoding proteins in pathways such as the cell cycle and cell morphogenesis. Interestingly, the SIN3 187 isoform uniquely regulates a subset of pathways including post-embryonic development, phosphate metabolism and apoptosis. Target genes in the phosphate metabolism pathway include nuclear-encoded mitochondrial genes coding for proteins responsible for oxidative phosphorylation. Here, we investigate the physiological effects of SIN3 isoforms on energy metabolism and cell survival. We find that ectopic expression of SIN3 187 represses expression of several nuclear-encoded mitochondrial genes affecting production of ATP and generation of reactive oxygen species (ROS). Forced expression of SIN3 187 also activates several pro-apoptotic and represses a few anti-apoptotic genes. In the SIN3 187 expressing cells, these gene expression patterns are accompanied with an increased sensitivity to paraquat-mediated oxidative stress. These findings indicate that SIN3 187 influences the regulation of mitochondrial function, apoptosis and oxidative stress response in ways that are dissimilar from SIN3 220. The data suggest that the distinct SIN3 histone modifying complexes are deployed in different cellular contexts to maintain cellular homeostasis.
SIN3 支架蛋白是一种保守的转录调节剂,可精细调节基因表达。在果蝇中,存在两种主要的 SIN3 同工型,SIN3 220 和 SIN3 187,它们各自组装成多亚基组蛋白修饰复合物。同工型具有不同的发育表达模式和非冗余功能。基因调控网络分析表明,两种同工型都影响编码细胞周期和细胞形态发生等途径中蛋白质的基因。有趣的是,SIN3 187 同工型独特地调节包括胚胎后发育、磷酸盐代谢和细胞凋亡在内的一部分途径。磷酸盐代谢途径中的靶基因包括编码负责氧化磷酸化的蛋白质的核编码线粒体基因。在这里,我们研究 SIN3 同工型对能量代谢和细胞存活的生理影响。我们发现,SIN3 187 的异位表达抑制了几个核编码的线粒体基因的表达,这些基因影响 ATP 的产生和活性氧(ROS)的产生。强制表达 SIN3 187 还激活了几个促凋亡基因并抑制了几个抗凋亡基因。在表达 SIN3 187 的细胞中,这些基因表达模式伴随着对百草枯介导的氧化应激的敏感性增加。这些发现表明,SIN3 187 以不同于 SIN3 220 的方式影响线粒体功能、细胞凋亡和氧化应激反应的调节。数据表明,不同的 SIN3 组蛋白修饰复合物被部署在不同的细胞环境中以维持细胞内稳态。